Now showing 1 - 9 of 9
  • Publication
    Transformerless partial power converter topology for electric vehicle fast charge
    (2023-01-01)
    Pesantez, Daniel
    ;
    Renaudineau, Hugues
    ;
    Rivera, Sebastian
    ;
    Peralta, Alejandro
    ;
    Marquez Alcaide, Abraham
    ;
    Increasing the power rating of electric vehicles (EV) fast charging stations to reduce charging times is considered critical to accelerate the adoption of electric vehicles. Besides increasing the power, other drivers pushing the development of EV fast chargers include the improvement of efficiency and reliability. Partial power converters (PPC) have emerged as an interesting option for some of the power converter stages in fast charging stations due to their potential to increase efficiency and power rating. However, some PPCs operate as switched autotransformers by using high frequency (HF) isolation transformers but without providing galvanic isolation. This is a drawback due to cost, size and losses introduced by the transformer. This paper presents a transformerless DC–DC Type I step-up PPC for a DC–DC regulation converter for EV fast charging stations. The proposed converter replaces the transformer commonly used in Type I PPC by an impedance network, resulting in a more efficient, cheaper, and less complex converter option. This concept is verified through simulations and experimentally validated with a laboratory prototype.
  • Publication
    A Survey on Capacitor Voltage Control in Neutral-Point-Clamped Multilevel Converters
    (2022-02-01)
    Alepuz, Salvador
    ;
    Busquets-Monge, Sergio
    ;
    Nicolás-Apruzzese, Joan
    ;
    Filbà-Martínez, Àlber
    ;
    Bordonau, Josep
    ;
    Yuan, Xibo
    ;
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.
    Scopus© Citations 23
  • Publication
    Dual-Boost Inverter for PV Microinverter Application—An Assessment of Control Strategies
    (2022-06-11)
    Lopez-Caiza, Diana
    ;
    Renaudineau, Hugues
    ;
    Muller, Nicolas
    ;
    Flores-Bahamonde, Freddy
    ;
    ;
    Rodriguez, Jose
    Photovoltaic (PV) microinverters have grown rapidly in the small-scale PV market, where typical two-stage converters are used to connect one PV module to the single-phase AC grid. This configuration achieves better performance in terms of energy yield compared with other PV configurations. However, the conversion efficiency of a two-stage system is the main drawback, especially when a high-voltage gain effort is required. In this context, single-stage microinverter topologies have been recently proposed since only one power conversion stage is required to extract the maximum power of the PV module and inject the AC power to the grid. This single-stage configuration allows considerable improvement of the overall efficiency of microinverters by reducing the number of elements in the system. However, the main challenge of these topologies is their control, since all variables of the converter are composed by the AC waveform with DC-bias. In this paper, four control strategies are analyzed for the mainstream single-stage topology, which is the dual-boost inverter (DBI). Classical linear control and three non-linear strategies, namely finite control set–model predictive control, flatness-based control, and sliding mode control, are detailed. The main contribution of this work is a complete comparison of the control strategies, to give insights into the most suitable control strategy for the DBI in PV microinverter application.
    Scopus© Citations 5
  • Publication
    Charging Infrastructure and Grid Integration for Electromobility
    (2023-04-01)
    Rivera, Sebastian
    ;
    Goetz, Stefan M.
    ;
    ;
    Lehn, Peter W.
    ;
    Pathmanathan, Mehanathan
    ;
    Bauer, Pavol
    ;
    Mastromauro, Rosa Anna
    Electric vehicle (EV) charging infrastructure will play a critical role in decarbonization during the next decades, energizing a large share of the transportation sector. This will further increase the enabling role of power electronics converters as an energy transition technology in the widespread adoption of clean energy sources and their efficient use. However, this deep transformation comes with challenges, some of which are already unfolding, such as the slow deployment of charging infrastructure and competing charging standards, and others that will have a long-term impact if not addressed timely, such as the reliability of power converters and power system stability due to loss of system inertia, just to name a few. Nevertheless, the inherent transition toward power systems with higher penetration of power electronics and batteries, together with a layer of communications and information technologies, will also bring opportunities for more flexible and intelligent grid integration and services, which could increase the share of renewable energy in the power grid. This work provides an overview of the existing charging infrastructure ecosystem, covering the different charging technologies for different EV classes, their structure, and configurations, including how they can impact the grid in the future
    Scopus© Citations 50
  • Publication
    MPPT Algorithm Based on Artificial Bee Colony for PV System
    (2021-01-01)
    Gonzalez-Castano, Catalina
    ;
    Restrepo, Carlos
    ;
    ;
    Rodriguez, Jose
    Energy structures from non-conventional energy source has become highly demanded nowadays. In this way, the maximum power extraction from photovoltaic (PV) systems has attracted the attention, therefore an optimization technique is necessary to improve the performance of solar systems. This article proposes the use of ABC (artificial bee colony) algorithm for the maximum power point tracking (MPPT) of a PV system using a DC-DC converter. The procedure of the ABC MPPT algorithm is using data values from PV module, the P-V characteristic is identified and the optimal voltage is selected. Then, the MPPT strategy is applied to obtain the voltage reference for the outer PI control loop, which in turn provides the current reference to the predictive digital current programmed control. A real-time and high-speed simulator (PLECS RT Box 1) and a digital signal controller (DSC) are used to implement the hardware-in-the-loop system to obtain the results. The general system does not have a high computational cost and can be implemented in a commercial low-cost DSC (TI 28069M). The proposed MPPT strategy is compared to the conventional perturb and observe method, results show the proposed method archives a much superior performance.
    Scopus© Citations 117
  • Publication
    Harmonic Impedance Model of Multiple Utility-Interactive Multilevel Photovoltaic Inverters
    (2022-12-01)
    Rojas, Christian A.
    ;
    ;
    Inzunza, Ruben
    ;
    Mitsugi, Yasuaki
    ;
    Alcaide, Abraham M.
    An important requirement of the power grid with high penetration of renewable energy sources is the mitigation of potential harmonic interactions between different distributed large grid-tie inverters and the mains. This work presents the harmonic interaction between multiple multilevel photovoltaic (PV) inverters based on the well-known T-type neutral-point-clamped inverter (3L-TNPC). The multiple 3L-TNPC is connected in parallel to a common ac bus by using distribution voltage feeders. The analysis is performed by using the Norton equivalence model of each power circuit, its admittance matrix modeling, and the potential overall impedance resonances with the ac grid. The main contribution of this work is the development of a current harmonic injection model of the system operating under a polluted voltage grid for harmonic analysis, while overall filtering design restrictions due to impedance limits based on current and voltage standards are considered. The proposed impedance Norton model is compared with the electromagnetic transient model (EMT model) by using comprehensive simulations, showing good match between both models.
    Scopus© Citations 6
  • Publication
    Hardware-in-the-loop to test an mppt technique of solar photovoltaic system: A support vector machine approach
    (2021-03-02)
    González-Castaño, Catalina
    ;
    Marulanda, James
    ;
    Restrepo, Carlos
    ;
    ;
    Alzate, Alfonso
    ;
    Rodriguez, Jose
    This paper proposes a new method for maximum power point tracking (MPPT) of the photovoltaic (PV) system while using a DC-DC boost converter. The conventional perturb and observe (P&O) method has a fast tracking response, but it presents oscillation around the maximum power point (MPP) in steady state. Therefore, to satisfy transient and steady-state responses, this paper presents a MPPT method using support vector machines (SVMs). The use of SVM will help to improve the tracking speed of maximum power point of the PV system without oscillations near MPP. A boost converter is used to implement the MPPT method, where the input voltage of the DC-DC converter is regulated using a double loop where the inner loop is a current control that is based on passivity. The MPPT structure is validated by hardware in the loop, a real time and high-speed simulator (PLECS RT Box 1), and a digital signal controller (DSC) are used to model the PV system and implement the control strategies, respectively. The proposed strategy presents low complexity and it is implemented in a commercial low-cost DSC (TI 28069M). The performance of the MPPT proposed is presented under challenging experimental profiles with solar irradiance and temperature variations across the panel. In addition, the performance of the proposed method is compared with the P&O method, which is traditionally most often used in MPPT under demanding tests, in order to demonstrate the superiority of the strategy presented.
    Scopus© Citations 11
  • Publication
    SiC-mosfet or Si-IGBT: Comparison of design and key characteristics of a 690 V grid-tied industrial two-level voltage source converter
    (2021-06-01)
    Fuentes, Carlos D.
    ;
    Müller, Marcus
    ;
    Bernet, Steffen
    ;
    In this paper, a design driven comparison between two 190 kVA industrial three-phase two-level voltage source converter (2L-VSC) designs based in silicon carbide (SiC) and silicon (Si) for 690 V grids is presented. These two designs were conceived to have the same nominal power, while switching at reasonable switching speeds and requiring the same case to ambient thermal impedance. Under these conditions, the designs were studied to detect the potential gains and limitations that a pragmatic converter design could feature when using these two technologies regarding cost, efficiency, size and weight. To achieve this, experimentally determined semiconductor characteristics were used to perform simulations, the results of which were then used to design the essential parts of the converter. These designed parts were then corroborated with manufacturers, from which physical characteristics of all designed components were obtained. The results show that the SiC based design presents substantial weight savings and an 11% system cost reduction, while preserving its traditional characteristics such as improved overall efficiency when compared to the silicon based design under the given design requirements and constraints.
    Scopus© Citations 8
  • Publication
    Harmonic Impedance Model of Multiple Utility-Interactive Multilevel Photovoltaic Inverters
    (2022-12-01)
    Rojas, Christian A.
    ;
    ;
    Inzunza, Ruben
    ;
    Mitsugi, Yasuaki
    ;
    Alcaide, Abraham M.
    An important requirement of the power grid with high penetration of renewable energy sources is the mitigation of potential harmonic interactions between different distributed large grid-tie inverters and the mains. This work presents the harmonic interaction between multiple multilevel photovoltaic (PV) inverters based on the well-known T-type neutral-point-clamped inverter (3L-TNPC). The multiple 3L-TNPC is connected in parallel to a common ac bus by using distribution voltage feeders. The analysis is performed by using the Norton equivalence model of each power circuit, its admittance matrix modeling, and the potential overall impedance resonances with the ac grid. The main contribution of this work is the development of a current harmonic injection model of the system operating under a polluted voltage grid for harmonic analysis, while overall filtering design restrictions due to impedance limits based on current and voltage standards are considered. The proposed impedance Norton model is compared with the electromagnetic transient model (EMT model) by using comprehensive simulations, showing good match between both models.
    Scopus© Citations 6