Now showing 1 - 6 of 6
No Thumbnail Available
Publication

Search for light sterile neutrinos from W± decays at the LHC

2020-02-01, DIB VENTURELLI, CLAUDIO OMAR, Kim, C. S., Araya, Sebastian Tapia

We study the feasibility to observe sterile neutrinos with masses in the range 5 GeV

No Thumbnail Available
Publication

Search for heavy sterile neutrinos in trileptons at the LHC

2017-10-01, DIB VENTURELLI, CLAUDIO OMAR, Kim, C. S., Wang, Kechen

We present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W± → e± e± μ∓ ν and μ± μ± e∓ ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass mN = 20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb−1, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings |UNe|2 ∼ |UNμ|2∼ 10−6, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10−5.

No Thumbnail Available
Publication

Majorana vs. Dirac sterile neutrinos at the LHC

2018-06-25, DIB VENTURELLI, CLAUDIO OMAR, Kim, C. S., Wang, Kechen, Zhang, Jue

We study leptonic decays W± → e±e±μ∓ν and W± → μ±μ±e∓ν which would occur at the LHC if there exist sterile neutrinos with masses below MW . We also study ways to discriminate their Majorana or Dirac character, a rather non trivial task, because lepton number conservation cannot be checked due to the missing neutrino in the final state. We find that it is indeed possible to discriminate between Majorana vs. Dirac sterile neutrinos by comparing the production of e±e±μ∓ vs. μ±μ±e∓ if the N-e and N-μ mixings are sufficiently different. Alternatively, one could also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even for equal N-e and N-μ mixings.

No Thumbnail Available
Publication

Search for sterile neutrinos decaying into pions at the LHC

2018-02-01, DIB VENTURELLI, CLAUDIO OMAR, Kim, C. S., Neill, Nicolás A., Yuan, Xing Bo

We study the possibility to observe sterile neutrinos with masses in the range between 5 GeV and 20 GeV at the LHC, using the exclusive semileptonic modes involving pions, namely W to lepton + N to n pions + lepton+lepton (n = 1, 2, 3). The two pion and three pion modes require extrapolations of form factors to large time-like q2, which we do using vector dominance models as well as light front holographic QCD, with remarkable agreement. This mass region is difficult to explore with inclusive dilepton+dijet modes or trilepton modes and impossible to explore in rare meson decays. While particle identification is a real challenge in these modes, vertex displacement due to the long living neutrino in the above mass range can greatly help reduce backgrounds. Assuming a sample of 109 W bosons at the end of the LHC Run 2, these modes could discover a sterile neutrino in the above mass range or improve the current bounds on the heavy-to-light lepton mixings by an order of magnitude, U2lN∼2×10−6. Moreover, by studying the equal sign and opposite sign dileptons, the Majorana or Dirac character of the sterile neutrino may be revealed.

No Thumbnail Available
Publication

Majorana vs. Dirac sterile neutrinos lighter than MW at the LHC

2017-09-20, DIB VENTURELLI, CLAUDIO OMAR, Kim, C. S., Wang, K., Zhang, J.

We propose to study the leptonic decays W± → e±e±μ∓ν and W± → μ±μ±e∓ν at the LHC to discover sterile neutrinos with masses below MW , and discriminate their Majorana or Dirac character. These decays are induced by a sterile neutrino N that goes on mass shell in the intermediate state. We find that, even though the final (anti-)neutrino goes undetected and thus lepton number is unchecked, one can distinguish between the Majorana vs. Dirac character of the intermediate sterile neutrino by comparing the production of e±e±μ∓ vs. μ±μ±e∓, provided the N-e and N-μ mixings are different enough. Alternatively, one can also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even if the N-e and N-μ mixings are equal.

No Thumbnail Available
Publication

CP violation with Majorana neutrinos in K meson decays

2015-01-01, Dib Venturelli, Claudio Omar, Campos, Miguel, Kim, C. S.

We study the possibility of having CP asymmetries in the decay K± → π ∓` ±` ± (` = e, µ). This decay violates Lepton Number by two units and occurs only if there are Majorana particles that mediate the transition. Even though the absolute rate is highly suppressed by current bounds, we search for Majorana neutrino scenarios where the CP asymmetry arising from the lepton sector could be sizeable. This is indeed the case if there are two or more Majorana neutrinos with similar masses in the range around 102 MeV. In particular, the asymmetry is potentially near unity if two neutrinos are nearly degenerate, in the sense ∆mN ∼ ΓN . The full decay, however, may be difficult to detect not only because of the suppression caused by the heavy-to-light lepton mixing, but also because of the long lifetime of the heavy neutrino, which would induce large space separation between the two vertices where the charge leptons are produced. This particular problem should be less serious in heavier meson decays, as they involve heavier neutrinos with shorter lifetimes.