Options
Photovoltaic Module and Submodule Level Power Electronics and Control
Journal
IEEE Transactions on Industrial Electronics
Date Issued
2019-05-01
Author(s)
Abstract
The nine papers in this special section focus on photovoltaic module and sub-module level power electronics. Grid connected photovoltaic energy systems have experienced an explosive growth over the last decade, with a cumulative installed capacity surpassing the 400 GW milestone as of 2017. Among PV system configurations, distributed module-level converter architectures can lead to a higher energy yield by mitigating partial shading, persistent shading (soiling, snow, bird droppings, and fallen leaves), mismatch, and aging, through a higher maximum power point tracking (MPPT) efficiency. Also, distributed electronics might be the key for implementing diagnostic and prognostic actions at a module level. Among these configurations, microinverters (also known as ac-module inverter), which connect a single PV module to the grid, and PV power optimizers, which are dc–dc converters performing the MPPT function at a module level, have attracted the academic and industrial interest in the last decade. So much so, that both microinverters and dc–dc power optimizers are commercialized by tens of companies around the world, with a great variety of circuit topologies, which comprise combinations of one or more power stages, interleaved converters, resonant converters, topologies with and without isolation, etc.
File(s)
No Thumbnail Available
Name
Photovoltaic_Module_and_Submodule_Level_Power_Electronics_and_Control_compressed.pdf
Size
40.01 KB
Format
Checksum