Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. Improved Subglottal Pressure Estimation from Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation
 
  • Details

Improved Subglottal Pressure Estimation from Neck-Surface Vibration in Healthy Speakers Producing Non-Modal Phonation

Journal
IEEE Journal on Selected Topics in Signal Processing
ISSN
1932-4553
Date Issued
2020-02-01
Author(s)
Lin, Jon Z.
Espinoza, Víctor M.
Marks, Katherine L.
Zañartu, Matías  
Departamento de Electrónica  
Mehta, Daryush D.
DOI
10.1109/JSTSP.2019.2959267
Abstract
Subglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal pressure from an unobtrusive miniature accelerometer sensor attached to the anterior base of the neck during typical modal voice production across multiple pitch and vowel contexts. This study expands on that work to incorporate additional accelerometer-based measures of vocal function to compensate for non-modal phonation characteristics and achieve an improved estimation of subglottal pressure. Subjects with normal voices repeated /p/-vowel syllable strings from loud-to-soft levels in multiple vowel contexts (/a/, /i/, and /u/), pitch conditions (comfortable, lower than comfortable, higher than comfortable), and voice quality types (modal, breathy, strained, and rough). Subject-specific, stepwise regression models were constructed using root-mean-square (RMS) values of the accelerometer signal alone (baseline condition) and in combination with cepstral peak prominence, fundamental frequency, and glottal airflow measures derived using subglottal impedance-based inverse filtering. Five-fold cross-validation assessed the robustness of model performance using the root-mean-square error metric for each regression model. Each cross-validation fold exhibited up to a 25% decrease in prediction error when the model incorporated multi-dimensional aspects of the accelerometer signal compared with RMS-only models. Improved estimation of subglottal pressure for non-modal phonation was thus achievable, lending to future studies of subglottal pressure estimation in patients with voice disorders and in ambulatory voice recordings.
Subjects

Subglottal pressure

Clinical voice assess...

Neck-surface accelero...

Ambulatory voice moni...

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback