Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. An Integrated Approach: A Hybrid Machine Learning Model for the Classification of Unscheduled Stoppages in a Mining Crushing Line Employing Principal Component Analysis and Artificial Neural Networksx
 
  • Details

An Integrated Approach: A Hybrid Machine Learning Model for the Classification of Unscheduled Stoppages in a Mining Crushing Line Employing Principal Component Analysis and Artificial Neural Networksx

Journal
Sensors
Date Issued
2024-09-01
Author(s)
Viveros, Pablo  
Departamento de Industrias  
Moya, Cristian
Departamento de Industrias  
Mena, Rodrigo 
Departamento de Industrias  
Godoy, David R.
Departamento de Industrias  
Kristjanpoller Rodriguez, Fredy Ariel  
Departamento de Industrias  
DOI
10.3390/s24175804
Abstract
<jats:p>This article implements a hybrid Machine Learning (ML) model to classify stoppage events in a copper-crushing equipment, more specifically, a conveyor belt. The model combines Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) with Principal Component Analysis (PCA) to identify the type of stoppage event when they occur in an industrial sector that is significant for the Chilean economy. This research addresses the critical need to optimise maintenance management in the mining industry, highlighting the technological relevance and motivation for using advanced ML techniques. This study focusses on combining and implementing three ML models trained with historical data composed of information from various sensors, real and virtual, as well from maintenance reports that report operational conditions and equipment failure characteristics. The main objective of this study is to improve the efficiency when identifying the nature of a stoppage serving as a basis for the subsequent development of a reliable failure prediction system. The results indicate that this approach significantly increases information reliability, addressing the persistent challenges in data management within the maintenance area. With a classification accuracy of 96.2% and a recall of 96.3%, the model validates and automates the classification of stoppage events, significantly reducing dependency on interdepartmental interactions. This advancement eliminates the need for reliance on external databases, which have previously been prone to errors, missing critical data, or containing outdated information. By implementing this methodology, a robust and reliable foundation is established for developing a failure prediction model, fostering both efficiency and reliability in the maintenance process. The application of ML in this context produces demonstrably positive outcomes in the classification of stoppage events, underscoring its significant impact on industry operations.</jats:p>
Subjects

classification

stoppages

support vector machin...

artificial neural net...

principal component a...

copper crushing

maintenance

reliability in data m...

File(s)
Loading...
Thumbnail Image
Name

sensors-24-05804.pdf

Size

3.1 MB

Format

Adobe PDF

Checksum

(MD5):34a163131bf0dacbd3e749b0f92bfa60

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback