Acoustic coupling during incomplete glottal closure and its effect on the inverse filtering of oral airflow
Journal
Proceedings of Meetings on Acoustics
ISSN
0001-4966
Date Issued
2013-06-19
Author(s)
Julio C. Ho
Daryush D. Mehta
Robert E. Hillman
George R. Wodicka
DOI
10.1121/1.4806676
Abstract
<jats:p>Inverse filtering of oral airflow using closed-phase linear prediction is expected to preserve the effects of source-filter interactions in the glottal airflow pulse. Under incomplete glottal closure, the glottal airflow estimation is more challenging due to a lowered glottal impedance, increased subglottal coupling, and violated all-pole assumption. To account for these effects, a model-based inverse filtering scheme allowing for coupling between glottis and upper and lower airways was developed. Acoustic transmission in the tracts used a frequency-domain transmission line. A linearized, time-varying expression was used for the glottal impedance, along with a dipole representation. Synthetic vowels sounds and actual recordings were used to evaluate the proposed scheme. Subject-specific model parameters were obtained from simultaneous aerodynamic, acoustic, and high-speed videoendoscopic recordings of normal subjects uttering vowels with various degrees of glottal closure. Results illustrated that, even under incomplete glottal closure, the airflow entering the vocal tract preserved source-filter interactions and was comparable to that obtained using closed-phase linear prediction. The scheme also yielded an uncoupled glottal airflow that exhibited a clear pulse de-skewing, making it proportional to the glottal area. Cases with larger glottal gaps exhibited lower mean impedances and less pulse skewing, with airflow estimates proportional to the transglottal pressure drop.</jats:p>