Inequalities for cyclic functions
Journal
Journal of Approximation Theory
Date Issued
2001-01-01
Author(s)
DOI
10.1006/jath.2001.3610
Abstract
The nth cyclic function is defined by
jn (z)=C
.
n=0
znn
(nn)! (z ¥ C, 2 [ n ¥ N).
We prove that if k is an integer with 1 [ k [ n−1, then
R (n − k)! j(k)
n (x)
xn−k S
a
< jn (x) < R (n − k)! j(k)
n (x)
xn−k S
b
holds for all positive real numbers x with the best possible constants
a=1 and b=R2n − k
n
S .
jn (z)=C
.
n=0
znn
(nn)! (z ¥ C, 2 [ n ¥ N).
We prove that if k is an integer with 1 [ k [ n−1, then
R (n − k)! j(k)
n (x)
xn−k S
a
< jn (x) < R (n − k)! j(k)
n (x)
xn−k S
b
holds for all positive real numbers x with the best possible constants
a=1 and b=R2n − k
n
S .
File(s)![Thumbnail Image]()
Loading...
Name
1-s2.0-S002190450193610X-main_compressed.pdf
Size
84.65 KB
Format
Adobe PDF
Checksum
(MD5):f7b71eba1feff742077302290babfcfe