Inequalities for cyclic functions
Journal
Journal of Approximation Theory
Date Issued
2001-01-01
Author(s)
DOI
10.1006/jath.2001.3610
Abstract
The nth cyclic function is defined by φₙ(z)=∑ᵥ₌₀∞ zⁿᵛ/(nν)! (z∈ℂ, 2≤n∈ℕ). We prove that if k is an integer with 1≤k≤n−1, then (n−k)! φₙ^(k)(x)xⁿ⁻ᵏ⁻ᵅ < φₙ(x) < (n−k)! φₙ^(k)(x)xⁿ⁻ᵏ⁻ᵝ holds for all positive real numbers x with the best possible constants α=1 and β=(2n−k)/n.
File(s)![Thumbnail Image]()
Loading...
Name
1-s2.0-S002190450193610X-main_compressed.pdf
Size
84.65 KB
Format
Adobe PDF
Checksum
(MD5):f7b71eba1feff742077302290babfcfe