Classical Machine Learning Techniques in the Search of Extrasolar Planets
Journal
CLEI Eletronic Journal (CLEIej)
ISSN
0717-5000
Date Issued
2019-01-01
Author(s)
DOI
10.19153/cleiej.22.3.3
Abstract
The field of astronomical data analysis has experienced an important paradigm shift in the recent years. The automation of certain analysis procedures is no longer a desirable feature for reducing the human effort, but a must have asset for coping with the extremely large datasets that new instrumentation technologies are producing. In particular, the detection of transit planets --- bodies that move across the face of another body --- is an ideal setup for intelligent automation. Knowing if the variation within a light curve is evidence of a planet, requires applying advanced pattern recognition methods to a very large number of candidate stars. Here we present a supervised learning approach to refine the results produced by a case-by-case analysis of light-curves, harnessing the generalization power of machine learning techniques to predict the currently unclassified light-curves. The method uses feature engineering to find a suitable representation for classification, and different performance criteria to evaluate them and decide. Our results show that this automatic technique can help to speed up the very time-consuming manual process that is currently done by expert scientists.