Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. On the Quality of Deep Representations for Kepler Light Curves Using Variational Auto-Encoders
 
  • Details

On the Quality of Deep Representations for Kepler Light Curves Using Variational Auto-Encoders

Journal
Signals
ISSN
2624-6120
Date Issued
2021-12-01
Author(s)
Mena, Francisco
Departamento de Informática  
Olivares, Patricio
Departamento de Electrónica  
Bugueño, Margarita  
Departamento de Informática  
Molina, Gabriel
Departamento de Informática  
Araya, Mauricio  
Departamento de Electrónica  
DOI
10.3390/signals2040042
Abstract
<jats:p>Light curve analysis usually involves extracting manually designed features associated with physical parameters and visual inspection. The large amount of data collected nowadays in astronomy by different surveys represents a major challenge of characterizing these signals. Therefore, finding good informative representation for them is a key non-trivial task. Some studies have tried unsupervised machine learning approaches to generate this representation without much effectiveness. In this article, we show that variational auto-encoders can learn these representations by taking the difference between successive timestamps as an additional input. We present two versions of such auto-encoders: Variational Recurrent Auto-Encoder plus time (VRAEt) and re-Scaling Variational Recurrent Auto Encoder plus time (S-VRAEt). The objective is to achieve the most likely low-dimensional representation of the time series that matched latent variables and, in order to reconstruct it, should compactly contain the pattern information. In addition, the S-VRAEt embeds the re-scaling preprocessing of the time series into the model in order to use the Flux standard deviation in the learning of the light curves structure. To assess our approach, we used the largest transit light curve dataset obtained during the 4 years of the Kepler mission and compared to similar techniques in signal processing and light curves. The results show that the proposed methods obtain improvements in terms of the quality of the deep representation of phase-folded transit light curves with respect to their deterministic counterparts. Specifically, they present a good balance between the reconstruction task and the smoothness of the curve, validated with the root mean squared error, mean absolute error, and auto-correlation metrics. Furthermore, there was a good disentanglement in the representation, as validated by the Pearson correlation and mutual information metrics. Finally, a useful representation to distinguish categories was validated with the F1 score in the task of classifying exoplanets. Moreover, the S-VRAEt model increases all the advantages of VRAEt, achieving a classification performance quite close to its maximum model capacity and generating light curves that are visually comparable to a Mandel–Agol fit. Thus, the proposed methods present a new way of analyzing and characterizing light curves.</jats:p>
Subjects

variational auto-enco...

representation learni...

transit model

light curve

unsupervised learning...

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual

EXTENSIÓN Y CULTURA

  • Dirección General de Comunicaciones
  • Dirección General de Vinculación con el Medio
  • Oficina de Asuntos Internacionales
  • Red de Ex-Alumnos
  • Noticias USM
  • Eventos USM
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback