Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. Artificial neural network (ANN) modelling to estimate bubble size from macroscopic image and object features
 
  • Details

Artificial neural network (ANN) modelling to estimate bubble size from macroscopic image and object features

Journal
Physicochemical Problems of Mineral Processing
Date Issued
2023-01-01
Author(s)
Vinnett, Luis  
Departamento de Ingeniería Química y Ambiental  
León, Roberto  
Mesa, Diego
DOI
10.37190/ppmp/185759
Abstract
<jats:p>Bubble size measurements in aerated systems such as froth flotation cells are critical for controlling gas dispersion. Commonly, bubbles are measured by obtaining representative photographs, which are then analyzed using segmentation and identification software tools. Recent developments have focused on enhancing these segmentation tools. However, the main challenges around complex bubble cluster segmentation remain unresolved, while the tools to tackle these challenges have become increasingly complex and computationally expensive. In this work, we propose an alternative solution, circumventing the need for image segmentation and bubble identification. An Artificial Neural Network (ANN) was trained to estimate the Sauter mean bubble size (D<sub>32</sub>) based on macroscopic image features obtained with simple and inexpensive image analysis. The results showed excellent prediction accuracy, with a correlation coefficient, R, over 0.998 in the testing stage, and without bias in its error distribution. This machine learning tool paves the way for robust and fast estimation of bubble size under complex bubble images, without the need of image segmentation.</jats:p>
Subjects

machine learning

artificial neural net...

flotation

bubble size

Sauter diameter

File(s)
Loading...
Thumbnail Image
Name

Artificial neural network.pdf

Size

1.03 MB

Format

Adobe PDF

Checksum

(MD5):a3b66934362512157eac92f438f693d2

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual

EXTENSIÓN Y CULTURA

  • Dirección General de Comunicaciones
  • Dirección General de Vinculación con el Medio
  • Oficina de Asuntos Internacionales
  • Red de Ex-Alumnos
  • Noticias USM
  • Eventos USM
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback