Now showing 1 - 2 of 2
  • Publication
    On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids
    (2021-11-01)
    Mora, Luis A.
    ;
    Le Gorrec, Yann
    ;
    Matignon, Denis
    ;
    ;
    In-flame optical characterization of soot is of vital importance to understand soot formation mechanisms as well as to develop and validate accurate soot models. The present work introduces an unconventional methodology adapted to laminar axisymmetric flames that avoids the issue of variable measurement volume with varying scattering angle in the existing light scattering techniques and thus enables the determination of aggregate size with a higher spatial resolution. Coupled with multi-wavelength line-of-sight attenuation measurements, the proposed Horizontal Planar Angular Light Scattering at 532 nm was found able to provide radial profiles of aggregate size, number and diameter of primary spheres, soot volume fraction, and number density in a laminar axisymmetric coflow ethylene/air diffusion flame established over a Gülder burner. The spatial variation of soot optical properties associated with soot maturity was considered in data analysis.
  • Publication
    About dissipative and pseudo port-Hamiltonian formulations of irreversible Newtonian compressible flows
    (2020-01-01)
    Mora, Luis A.
    ;
    Le Gorrec, Yann
    ;
    Matignon, Denis
    ;
    Ramirez, Hector
    ;
    In this paper we consider the physical-based modeling of 3D and 2D Newtonian fluids including thermal effects in order to cope with the first and second principles of thermodynamics. To describe the energy fluxes of non-isentropic fluids we propose a pseudo port-Hamiltonian formulation, which includes the rate of irreversible entropy creation by heat flux. For isentropic fluids, the conversion of kinetic energy into heat by viscous friction is considered as an energy dissipation associated with the rotation and compression of the fluid. Then, a dissipative port-Hamiltonian formulation is derived for this class of fluids. In the 2D case we modify the vorticity operators in order to preserve the structure of the proposed models. Moreover, we show that a description for inviscid or irrotational fluids can be derived from the proposed models under the corresponding assumptions leading to a pseudo or dissipative port-Hamiltonian structures.
    Scopus© Citations 7