Now showing 1 - 10 of 16
  • Publication
    Photovoltaic Module and Submodule Level Power Electronics and Control
    (2019-05-01)
    Spagnuolo, Giovanni
    ;
    ;
    Vinnikov, Dmitri
    The nine papers in this special section focus on photovoltaic module and sub-module level power electronics. Grid connected photovoltaic energy systems have experienced an explosive growth over the last decade, with a cumulative installed capacity surpassing the 400 GW milestone as of 2017. Among PV system configurations, distributed module-level converter architectures can lead to a higher energy yield by mitigating partial shading, persistent shading (soiling, snow, bird droppings, and fallen leaves), mismatch, and aging, through a higher maximum power point tracking (MPPT) efficiency. Also, distributed electronics might be the key for implementing diagnostic and prognostic actions at a module level. Among these configurations, microinverters (also known as ac-module inverter), which connect a single PV module to the grid, and PV power optimizers, which are dc–dc converters performing the MPPT function at a module level, have attracted the academic and industrial interest in the last decade. So much so, that both microinverters and dc–dc power optimizers are commercialized by tens of companies around the world, with a great variety of circuit topologies, which comprise combinations of one or more power stages, interleaved converters, resonant converters, topologies with and without isolation, etc.
    Scopus© Citations 12
  • Publication
    MPPT Algorithm Based on Artificial Bee Colony for PV System
    (2021-01-01)
    Gonzalez-Castano, Catalina
    ;
    Restrepo, Carlos
    ;
    ;
    Rodriguez, Jose
    Energy structures from non-conventional energy source has become highly demanded nowadays. In this way, the maximum power extraction from photovoltaic (PV) systems has attracted the attention, therefore an optimization technique is necessary to improve the performance of solar systems. This article proposes the use of ABC (artificial bee colony) algorithm for the maximum power point tracking (MPPT) of a PV system using a DC-DC converter. The procedure of the ABC MPPT algorithm is using data values from PV module, the P-V characteristic is identified and the optimal voltage is selected. Then, the MPPT strategy is applied to obtain the voltage reference for the outer PI control loop, which in turn provides the current reference to the predictive digital current programmed control. A real-time and high-speed simulator (PLECS RT Box 1) and a digital signal controller (DSC) are used to implement the hardware-in-the-loop system to obtain the results. The general system does not have a high computational cost and can be implemented in a commercial low-cost DSC (TI 28069M). The proposed MPPT strategy is compared to the conventional perturb and observe method, results show the proposed method archives a much superior performance.
    Scopus© Citations 134
  • Publication
    Dual-Boost Inverter for PV Microinverter Application—An Assessment of Control Strategies
    (2022-06-11)
    Lopez-Caiza, Diana
    ;
    Renaudineau, Hugues
    ;
    Muller, Nicolas
    ;
    Flores-Bahamonde, Freddy
    ;
    ;
    Rodriguez, Jose
    Photovoltaic (PV) microinverters have grown rapidly in the small-scale PV market, where typical two-stage converters are used to connect one PV module to the single-phase AC grid. This configuration achieves better performance in terms of energy yield compared with other PV configurations. However, the conversion efficiency of a two-stage system is the main drawback, especially when a high-voltage gain effort is required. In this context, single-stage microinverter topologies have been recently proposed since only one power conversion stage is required to extract the maximum power of the PV module and inject the AC power to the grid. This single-stage configuration allows considerable improvement of the overall efficiency of microinverters by reducing the number of elements in the system. However, the main challenge of these topologies is their control, since all variables of the converter are composed by the AC waveform with DC-bias. In this paper, four control strategies are analyzed for the mainstream single-stage topology, which is the dual-boost inverter (DBI). Classical linear control and three non-linear strategies, namely finite control set–model predictive control, flatness-based control, and sliding mode control, are detailed. The main contribution of this work is a complete comparison of the control strategies, to give insights into the most suitable control strategy for the DBI in PV microinverter application.
    Scopus© Citations 5
  • Publication
    Power production losses study by frequency regulation in weak-grid-connected utility-scale photovoltaic plants
    (2016-01-01)
    Muñoz-Cruzado-Alba, Jesús
    ;
    Rojas, Christian A.
    ;
    ;
    Díez, Eduardo Galván
    Nowadays, an increasing penetration of utility-scale photovoltaic plants (USPVPs) leads to a change in dynamic and operational characteristics of the power distribution system. USPVPs must help to maintain the system stability and reliability while implementing minimum technical requirements (MTRs) imposed by the utility grid. One of the most significant requirements is about frequency regulation (FR). Overall production of USPVPs is reduced significantly by applying FR curves, especially in weak grids with high rate of frequency faults. The introduction of a battery energy storage system (BESS) reduces losses and improves the grid system reliability. Experimental frequency and irradiance data of several weak grids have been used to analyse USPVPs losses related to FR requirements and benefits from the introduction of a BESS. Moreover, its economic viability is showen without the need for any economic incentives.
    Scopus© Citations 13
  • Publication
    Transformerless partial power converter topology for electric vehicle fast charge
    (2023-01-01)
    Pesantez, Daniel
    ;
    Renaudineau, Hugues
    ;
    Rivera, Sebastian
    ;
    Peralta, Alejandro
    ;
    Marquez Alcaide, Abraham
    ;
    Increasing the power rating of electric vehicles (EV) fast charging stations to reduce charging times is considered critical to accelerate the adoption of electric vehicles. Besides increasing the power, other drivers pushing the development of EV fast chargers include the improvement of efficiency and reliability. Partial power converters (PPC) have emerged as an interesting option for some of the power converter stages in fast charging stations due to their potential to increase efficiency and power rating. However, some PPCs operate as switched autotransformers by using high frequency (HF) isolation transformers but without providing galvanic isolation. This is a drawback due to cost, size and losses introduced by the transformer. This paper presents a transformerless DC–DC Type I step-up PPC for a DC–DC regulation converter for EV fast charging stations. The proposed converter replaces the transformer commonly used in Type I PPC by an impedance network, resulting in a more efficient, cheaper, and less complex converter option. This concept is verified through simulations and experimentally validated with a laboratory prototype.
    Scopus© Citations 5
  • Publication
    Step-down partial power DC-DC converters for two-stage photovoltaic string inverters
    (2019-01-01)
    Zapata, Jaime Wladimir
    ;
    ;
    Carrasco, Gonzalo
    ;
    Meynard, Thierry A.
    Photovoltaic (PV) systems composed by two energy conversion stages are attractive from an operation point of view. This is because the maximum power point tracking (MPPT) range is extended, due to the voltage decoupling between the PV system and the dc-link. Nevertheless, the additional dc-dc conversion stage increases the volume, cost and power converter losses. Therefore, central inverters based on a single-stage converter, have been a mainstream solution to interface large-scale PV arrays composed of several strings connected in parallel made by the series connections of PV modules. The concept of partial power converters (PPC), previously reported as a voltage step-up stage, has not addressed in depth for all types of PV applications. In this work, a PPC performing voltage step-down operation is proposed and analyzed. This concept is interesting from the industry point of view, since with the new isolation standards of PV modules are reaching 1500 V, increasing both the size of the string and dc-link voltage for single-stage inverters. Since grid connection remains typically at 690 V, larger strings impose more demanding operation for single-stage central inverters (required to operate at lower modulation indexes and demand higher blocking voltage devices), making the proposed step-down PPC an attractive solution. Theoretical analysis and an experimental test-bench was built in order to validate the PPC concept, the control performance and the improvement of the conversion efficiency. The experimental results corroborate the benefits of using a PPC, in terms of increasing the system efficiency by reducing the processed power of the converter, while not affecting the system performance.
    Scopus© Citations 20
  • Publication
    Editorial: Special issue on modular multilevel converters, 2015
    (2015-01-01)
    Perez, Marcelo A.
    ;
    Bernet, Steffen
    ;
    Rodriguez, Jose
    ;
    The articles in this special issue focus on the latest achievements of modular multilevel converters regarding the development of new circuit configurations, converter models, modulation strategies, and control schemes.
    Scopus© Citations 3
  • Publication
    Charging Architectures Integrated with Distributed Energy Resources for Sustainable Mobility
    (2017-01-01)
    Capasso, Clemente
    ;
    Riviera, Sebastian
    ;
    ;
    Veneri, Ottorino
    This paper introduces a study on the charging infrastructures, integrated with distributed energy sources, showing their ability to support the electric and hybrid mobility in a smart grid scenario. This analysis starts from a description of the main AC and DC architecture and then goes through the advantages derived by the integration of renewable energy sources within the existing electric power network. A section of this paper is then dedicated to the main technologies of energy storage systems, which allow and support the integration of unpredictable energy sources into the grid. Finally, the power on-board and off-board vehicle charging devices are analyzed with specific focus on PWM control schemes, for the regulation of AC/DC and DC/DC power converters, and on grid operations (V2G) related to different aggregation schemes.
    Scopus© Citations 12
  • Publication
    Five-level T-type cascade converter for rooftop grid-connected photovoltaic systems
    (2019-05-08)
    Verdugo, Cristian
    ;
    ; ;
    Perez, Marcelo A.
    ;
    Meynard, Thierry
    ;
    Malinowski, Mariusz
    Multilevel converters are widely considered to be the most suitable configurations for renewable energy sources. Their high-power quality, efficiency and performance make them interesting for PV applications. In low-power applications such as rooftop grid-connected PV systems, power converters with high efficiency and reliability are required. For this reason, multilevel converters based on parallel and cascaded configurations have been proposed and commercialized in the industry. Motivated by the features of multilevel converters based on cascaded configurations, this work presents the modulation and control of a rooftop single-phase grid-connected photovoltaic multilevel system. The configuration has a symmetrical cascade connection of two three-level T-type neutral point clamped power legs, which creates a five-level converter with two independent string connections. The proposed topology merges the benefits of multi-string PV and symmetrical cascade multilevel inverters. The switching operation principle, modulation technique and control scheme under an unbalanced power operation among the cell are addressed. Simulation and experimental validation results in a reduced-scale power single-phase converter prototype under variable conditions at different set points for both PV strings are presented. Finally, a comparative numerical analysis between other T-type configurations to highlight the advantages of the studied configuration is included.
    Scopus© Citations 15
  • Publication
    Step-up partial power DC-DC converters for two-stage PV systems with interleaved current performance
    (2018-02-01)
    Zapata, Jaime Wladimir
    ;
    ;
    Carrasco, Gonzalo
    ;
    Hugues Renaudineau
    This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS) configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.
    Scopus© Citations 27