Options
Carcamo Hernández, Antonio
Loading...
Nombre
Carcamo Hernández, Antonio
Campus / Sede
Campus Casa Central Valparaíso
Email
ORCID
Scopus Author ID
36184964200
Now showing 1 - 10 of 15
- PublicationSequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model(2019-06-01)
; ;Pasechnik, Roman; Abstract Extended scalar and fermion sectors offer new opportunities for generating the observed strong hierarchies in the fermion mass and mixing patterns of the Standard Model (SM). In this work, we elaborate on the prospects of a particular extension of the Inert Higgs doublet model where the SM hierarchies are generated sequentially by radiative virtual corrections in a fully renormalisable way, i.e. without adding any non-renormalisable Yukawa terms or soft-breaking operators to the scalar potential. Our model has a potential to explain the recently observed R K and R K∗ anomalies, thanks to the non universal U1X assignments of the fermionic fields that yield non universal Z′ couplings to fermions. We explicitly demonstrate the power of this model for generating the realistic quark, lepton and neutrino mass spectra. In particular, we show that due to the presence of both continuous and discrete family symmetries in the considered framework, the top quark acquires a tree-level mass, lighter quarks and leptons get their masses at one- and two-loop order, while neutrino masses are generated at three-loop level. The minimal field content, particle spectra and scalar potential of this model are discussed in detail. - PublicationRadiative type-I seesaw neutrino masses(2019-12-09)
; ; ;Cepedello, Ricardo ;Hirsch, MartinWe discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino masses in a type-I seesaw. We first present the general idea in a model-independent way. This allows us to estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches. - PublicationA renormalizable left-right symmetric model with low scale seesaw mechanisms(2022-03-01)
; We propose a low scale renormalizable left-right symmetric theory that successfully explains the observed SM fermion mass hierarchy, the tiny values for the light active neutrino masses and is consistent with the lepton and baryon asymmetries of the Universe, the muon and electron anomalous magnetic moments as well as with the constraints arising from the meson oscillations. In the proposed model the top and exotic quarks obtain masses at tree level, whereas the masses of the bottom, charm and strange quarks, tau and muon leptons are generated from a tree level Universal Seesaw mechanism, thanks to their mixings with the charged exotic vector like fermions. The masses for the first generation SM charged fermions arise from a radiative seesaw mechanism at one loop level, mediated by charged vector like fermions and electrically neutral scalars. The light active neutrino masses are produced from a one-loop level inverse seesaw mechanism mediated by electrically neutral scalar singlets and right handed Majorana neutrinos. Our model is also consistent with the experimental constraints arising from the Higgs diphoton decay rate as well as with the constraints arising from charged lepton flavor violation. We also discuss the and heavy scalar production at a proton-proton collider.Scopus© Citations 8 - PublicationZ mediated flavor changing neutral currents with a fourth vectorlike family(2022-01-01)
;King, S. F. ;Lee, H.We discuss Z mediated flavor changing neutral currents within a model where the hierarchical quark and lepton masses are explained via a fourth vectorlike family, together with a scalar sector consisting of two Higgs doublets augmented by a gauge singlet scalar field that spontaneously breaks an extra global Uð1Þ0 symmetry. The Z mediated flavor violating interactions arise from the mixings between the SM fermions and the vectorlike fermions, where the mixing is discussed in an analytic approximation and also exactly numerically. We first discuss charged lepton flavor violating (CLFV) τ → μγ, τ → 3μ and Z → μτ decays and find that they cannot significantly constrain the masses of charged vectorlike leptons. However, the 790 GeV mass bound arising from collider searches on vectorlike lepton doublets can set further constraints on the model parameter space. We also consider rare t → cZ decays as well as unitarity violation in the CKM mixing in order to constrain the quark sector of the model under consideration.Scopus© Citations 5 - PublicationThree-loop inverse scotogenic seesaw models(2024-05-01)
;Abada, Asmaa ;Bernal, Nicolás; ; de Melo, Téssio B.Abstract We propose a class of models providing an explanation of the origin of light neutrino masses, the baryon asymmetry of the Universe via leptogenesis and offering viable dark matter candidates. In these models the Majorana masses of the active neutrino are generated by the inverse seesaw mechanism with the lepton number violating right-handed Majorana neutrino masses μ arising at three loops. The latter is ensured by the preserved discrete symmetries, which also guarantee the stability of the dark matter candidate. We focus on one of these models and perform a detailed analysis of the phenomenology of its leptonic sector. The model can successfully accommodate baryogenesis through leptogenesis in both weak and strong washout regimes. The lightest heavy fermion turns out to be a viable dark matter candidate, provided that the entries of the Majorana submatrix μ are in the keV to MeV range. The solutions are consistent with the experimental constraints, accommodating both mass orderings for active neutrinos, in particular charged-lepton flavor violating decays μ → eγ, μ → eee, and the electron-muon conversion processes get sizable rates within future sensitivity reach.Scopus© Citations 1 - PublicationFermion masses and mixings and some phenomenological aspects of a 3-3-1 model with linear seesaw mechanism(2019-11-26)
; ;Pérez-Julve, Nicolás A.Hidalgo Velásquez, YocelyneWe propose a viable theory based on the SU(3)C×SU(3)L×U(1)X gauge group supplemented by the S4 discrete group together with other various symmetries, whose spontaneous breaking gives rise to the current SM fermion mass and mixing hierarchy. In the proposed theory the small light active neutrino masses are generated from a linear seesaw mechanism mediated by three Majorana neutrinos. The model is capable of reproducing the experimental values of the physical observables of both quark and lepton sectors. Our model is predictive in the quark sector having 9 effective parameters that allow to successfully reproduce the four CKM parameters and the six Standard Model (SM) quark masses. In the SM quark sector, there is particular scenario, motivated by naturalness arguments, which allows a good fit for its ten observables, with only six effective parameters. We also study the single heavy scalar production via gluon fusion mechanism at proton-proton collider. Our model is also consistent with the experimental constraints arising from the Higgs diphoton decay rate.Scopus© Citations 22 - PublicationHow low-scale trinification sheds light in the flavor hierarchies, neutrino puzzle, dark matter, and leptogenesis(2020-11-06)
; ;Huong, D. T.; ;Morais, António P. ;Pasechnik, RomanWe propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficient leptogenesis. The proposed theory is based on the trinification SUð3ÞC × SUð3ÞL × SUð3ÞR gauge symmetry, which is supplemented with an additional flavor symmetry Uð1ÞX × Zð1Þ 2 × Zð2Þ 2 . In the proposed model the top quark and the exotic fermions acquire tree-level masses, whereas the lighter SM charged fermions gain masses radiatively at one-loop level. In addition, the light active neutrino masses arise from a combination of radiative and type-I seesaw mechanisms, with the Dirac neutrino mass matrix generated at one-loop levelScopus© Citations 7 - PublicationDark matter from a radiative inverse seesaw majoron model(2023-12-10)
;Bonilla, Cesar; ;Díaz Sáez, Bastián; Marchant González, JuanWe propose a Majoron-like extension of the Standard Model with an extra global -symmetry where neutrino masses are generated through an inverse seesaw mechanism at the 1-loop level. In contrast to the tree-level inverse seesaw, our framework contains dark matter (DM) candidates stabilized by a residual -symmetry surviving spontaneous breaking of the -group. We explore the case in which the DM is a Majorana fermion. Furthermore, we provide parameter space regions allowed by current experimental constraints coming from the dark matter relic abundance, (in)direct detection, and charged lepton flavor violation.Scopus© Citations 3 - PublicationFermion mass and mixing in a low-scale seesaw model based on the S4 flavor symmetry(2019-11-15)
;Vien, V. V. ;Long, H. N.Abstract We construct a low-scale seesaw model to generate the masses of active neutrinos based on $S_4$ flavor symmetry supplemented by the $Z_2 \times Z_3 \times Z_4 \times Z_{14}\times U(1)_L$ group, capable of reproducing the low-energy Standard Model (SM) fermion flavor data. The masses of the SM fermions and the fermionic mixing parameters are generated from a Froggatt–Nielsen mechanism after spontaneous breaking of the $S_4\times Z_2 \times Z_3 \times Z_4 \times Z_{14}\times U(1)_L$ group. The obtained values for the physical observables of the quark and lepton sectors are in good agreement with the most recent experimental data. The leptonic Dirac CP-violating phase $\delta _\mathrm{CP}$ is predicted to be $259.579^\circ$ and the predictions for the absolute neutrino masses in the model can also saturate the recent constraints.Scopus© Citations 10 - PublicationNeutrino predictions from a left-right symmetric flavored extension of the standard model(2019-02-01)
; ;Valle, José W.F.; Vaquera-Araujo, C. A.Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Δ (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ − τ symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.Scopus© Citations 26