Now showing 1 - 2 of 2
  • Publication
    A Methodological Framework for Managing the Alarms in Wind Turbine Control and Data Acquisition Systems for Failure Analysis
    (2024-09-01)
    Castillo-Navarro, Javier
    ;
    ;
    Mena, Rodrigo
    ;
    Godoy, David R.
    ;
    Renewable energies have a fundamental role in sustainability, with wind power being one of the most important due to its low production costs. Modern wind turbines are becoming bigger and more complex, and their operation and maintenance must be as optimized as possible. In this context, supervisory control and data acquisition systems provide valuable information, but there is no precise methodology for their analysis. To overcome this need, a generalized methodology is proposed to determine the recognition of critical subsystems through alarm analysis and management. The proposed methodology defines each subsystem in a precise way, shows the indicators for the alarms, and presents a theoretical framework for its application using the quantity and activation times of alarms, along with the real downtime. It also considers the transition of states when the wind turbine is operationally inactive. To highlight the proposal’s novelty, the methodology is exemplified with a case study from the Southern Cone, applying the method through a data management and analysis tool. Four critical subsystems were found, with the alarms of wind vanes, anemometers, and emergency speeds being of relevance. The indicators and the graphical tools recommended helped guide the applied analysis.
  • Publication
    Criticality analysis based on reliability and failure propagation effect for a complex wastewater treatment plant
    (2021-11-01) ;
    Cárdenas-Pantoja, Nicolás
    ;
    ;
    Wastewater treatment is a critical and necessary task every human settlement is obligated to address. If not, the consequences might be catastrophic, not just for humans but for the ecosystems as well, pushing research into finding new ways to improve wastewater treatment processes to make them safer and more efficient. Hence, there is a need to address matters, such as reliability and maintainability of Wastewater Treatment Plants (WWTP), when analyzing the availability and operational conditions. These should be addressed by analyzing the plant operational effectiveness impact (P-OEI), and in this article specifically, a WWTP study case to identify design flaws or improvement opportunities. A vital aspect of a complex system is to determine the contribution to resilience, reliability, and availability of every element embedded in the system. This is performed by adapting and applying the P-OEI methodology and real data of a WWTP located in Chile. This methodology breaks down the system into several levels of disaggregation similar to RBD methodology, analyzing the upstream for availability and the downstream for the P-OEI analysis from the system itself to the individual elements within subsystems. The potential impact on the overall system’s lack of efficiency is also quantified by an Expected Operational Impact (EOI) index, which is also calculated by the methodology. The P-OEI and EOI analyses performed in this study are powerful tools to assess the design and performance of complex systems and WWTP in particular.
    Scopus© Citations 5