Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Horizontal spreading of planetary debris accreted by white dwarfs
 
  • Details

Horizontal spreading of planetary debris accreted by white dwarfs

Journal
Monthly Notices of the Royal Astronomical Society
Date Issued
2021-05-01
Author(s)
Cunningham, Tim
Tremblay, Pier Emmanuel
Bauer, Evan B.
Toloza, Odette  
Cukanovaite, Elena
Koester, Detlev
Farihi, Jay
Freytag, Bernd
G¨ansicke, Boris T.
Ludwig, Hans G¨unter
Veras, Dimitri
DOI
10.1093/mnras/stab553
Abstract
<jats:title>ABSTRACT</jats:title>
<jats:p>White dwarfs with metal-polluted atmospheres have been studied widely in the context of the accretion of rocky debris from evolved planetary systems. One open question is the geometry of accretion and how material arrives and mixes in the white dwarf surface layers. Using the three-dimensional (3D) radiation hydrodynamics code co5bold, we present the first transport coefficients in degenerate star atmospheres that describe the advection–diffusion of a passive scalar across the surface plane. We couple newly derived horizontal diffusion coefficients with previously published vertical diffusion coefficients to provide theoretical constraints on surface spreading of metals in white dwarfs. Our grid of 3D simulations probes the vast majority of the parameter space of convective white dwarfs, with pure-hydrogen atmospheres in the effective temperature range of 6000–18 000 K and pure-helium atmospheres in the range of 12 000–34 000 K. Our results suggest that warm hydrogen-rich atmospheres (DA; ${\gtrsim} 13\, 000$ K) and helium-rich atmospheres (DB and DBA; ${\gtrsim} 30\, 000$ K) are unable to efficiently spread the accreted metals across their surface, regardless of the time dependence of accretion. This result may be at odds with the current non-detection of surface abundance variations in white dwarfs with debris discs. For cooler hydrogen- and helium-rich atmospheres, we predict a largely homogeneous distribution of metals across the surface within a vertical diffusion time-scale. This is typically less than 0.1 per cent of disc lifetime estimates, a quantity that is revisited in this paper using the overshoot results. These results have relevance for studies of the bulk composition of evolved planetary systems and models of accretion disc physics.</jats:p>
Subjects

Accretion

Accretion discs

Atmospheres

Convection

Evolution

White dwarfs

accretion

accretion discs

convection

white dwarfs

evolution

atmospheres

File(s)
Loading...
Thumbnail Image
Name

stab553.pdf

Size

4.48 MB

Format

Adobe PDF

Checksum

(MD5):7a8c41a89f32dfaf5d965f961d7f6447

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual

EXTENSIÓN Y CULTURA

  • Dirección General de Comunicaciones
  • Dirección General de Vinculación con el Medio
  • Oficina de Asuntos Internacionales
  • Red de Ex-Alumnos
  • Noticias USM
  • Eventos USM
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback