Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. Deep learning techniques to process 3D chest CT
 
  • Details

Deep learning techniques to process 3D chest CT

Journal
Journal of Universal Computer Science
Date Issued
2024-01-01
Author(s)
Solar, Mauricio  
Departamento de Informática  
Aguirre Olea, Pablo Leopoldo  
Departamento de Matemática  
DOI
10.3897/jucs.112977
Abstract
<jats:p>The idea of using X&ndash;rays and Computed Tomography (CT) images as diagnostic method has been explored in several studies. Most of these studies work with slices of CT image in 2D, requiring less computational capacity and less time to process them than 3D. The processing of volumetric data (the complete CT images in 3D) adds an extra dimension of information. However, the magnitude of the data is considerably larger than working with slices in 2D, so extra computational processing is required. In this study a model capable of performing a classification of a 3D input that represents the volume of the CT scan is proposed. The model is able to classify the 3D input between COVID&ndash;19 and Non&ndash;COVID&ndash;19, but reducing the use of resources when performing the classification. The proposed model is the <jats:italic>ResNet&ndash;50</jats:italic> model with a new dimension of information added, which is a simple <jats:italic>autoencoder</jats:italic>. This <jats:italic>autoencoder </jats:italic>is trained on the same dataset, and a vector representation of each exam is generated and used together with the exams to feed the <jats:italic>ResNet&ndash;50</jats:italic>. To validate the proposal, the same proposed model is compared with and without the <jats:italic>autoencoder </jats:italic>module that provides more information to the proposed model. The proposed model obtains better metrics than the same model without the <jats:italic>autoencoder</jats:italic>, confirming that extracting relevant features from the dataset helps improve the performance of the model.</jats:p>
Subjects

CNN

COVID–19

deep learning

CT

File(s)
Loading...
Thumbnail Image
Name

jucs-30-6-758_article-112977.pdf

Size

1.51 MB

Format

Adobe PDF

Checksum

(MD5):c6d9c1c5db2236541ca7ce2449ba3555

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual

EXTENSIÓN Y CULTURA

  • Dirección General de Comunicaciones
  • Dirección General de Vinculación con el Medio
  • Oficina de Asuntos Internacionales
  • Red de Ex-Alumnos
  • Noticias USM
  • Eventos USM
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback