Publication:
Robust self-organizing maps

cris.author.scopus-author-id22333831700
cris.author.scopus-author-id8875435500
cris.author.scopus-author-id8503737300
cris.author.scopus-author-id8875435300
cris.lastimport.scopus2025-08-21T15:27:09Z
cris.virtual.author-orcid0000-0002-9899-0051
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentDepartamento de Informática
cris.virtual.orcid0000-0002-9899-0051
cris.virtualsource.author-orcid5f0669e9-94a2-4447-b4fb-94b979be6deb
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department5f0669e9-94a2-4447-b4fb-94b979be6deb
cris.virtualsource.orcid5f0669e9-94a2-4447-b4fb-94b979be6deb
datacite.subject.fosoecd::Engineering and technology
dc.contributor.authorAllende , Héctor
dc.contributor.authorMoreno, Sebastian
dc.contributor.authorRogel, Cristian
dc.contributor.authorSalas, Rodrigo
dc.date.accessioned2024-12-03T17:51:44Z
dc.date.available2024-12-03T17:51:44Z
dc.date.issued2004-01-01
dc.description.abstractThe Self Organizing Map (SOM) model is an unsupervised learning neural network that has been successfully applied as a data mining tool. The advantages of the SOMs are that they preserve the topology of the data space, they project high dimensional data to a lower dimension representation scheme, and are able to find similarities in the data. However, the learning algorithm of the SOM is sensitive to the presence of noise and outliers as we will show in this paper. Due to the influence of the outliers in the learning process, some neurons (prototypes) of the ordered map get located far from the majority of data, and therefore, the network will not effectively represent the topological structure of the data under study. In this paper, we propose a variant to the learning algorithm that is robust under the presence of outliers in the data by being resistant to these deviations. We call this algorithm Robust SOM (RSOM). We will illustrate our technique on synthetic and real data sets.
dc.identifier10.1007/978-3-540-30463-0_22
dc.identifier.doi10.1007/978-3-540-30463-0_22
dc.identifier.isbn[3540235272]
dc.identifier.issn03029743
dc.identifier.scopus2-s2.0-25144443432
dc.identifier.urihttps://cris.usm.cl/handle/123456789/1821
dc.language.isoen
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofseriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightstrue
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSelf Organizing Maps
dc.subjectRobust Learning Algorithm
dc.subjectData Mining
dc.subjectArtificial Neural Networks.
dc.titleRobust self-organizing maps
dc.typeBook Series
dspace.entity.typePublication
oaire.citation.endPage186
oaire.citation.startPage179
oaire.citation.volume3287
oairecerif.author.affiliationCentro Científico Tecnológico de Valparaíso CCTVAL USM
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
person.affiliation.nameUniversidad Técnica Federico Santa María
person.affiliation.nameUniversidad Técnica Federico Santa María
person.affiliation.nameUniversidad de Valparaiso
person.affiliation.nameUniversidad Técnica Federico Santa María
person.identifier.scopus-author-id22333831700
person.identifier.scopus-author-id8875435500
person.identifier.scopus-author-id8503737300
person.identifier.scopus-author-id8875435300

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
978-3-540-30463-0_22.pdf
Size:
223.4 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections