Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. Connecting the Dots: What Graph-Based Text Representations Work Best for Text Classification using Graph Neural Networks?
 
  • Details

Connecting the Dots: What Graph-Based Text Representations Work Best for Text Classification using Graph Neural Networks?

Journal
Findings of the Association for Computational Linguistics: EMNLP 2023
Date Issued
2023-01-01
Author(s)
Bugueño, Margarita  
Departamento de Informática  
de Melo, Gerard
DOI
10.18653/v1/2023.findings-emnlp.600
Abstract
Given the success of Graph Neural Networks (GNNs) for structure-aware machine learning, many studies have explored their use for text classification, but mostly in specific domains with limited data characteristics. Moreover, some strategies prior to GNNs relied on graph mining and classical machine learning, making it difficult to assess their effectiveness in modern settings. This work extensively investigates graph representation methods for text classification, identifying practical implications and open challenges. We compare different graph construction schemes using a variety of GNN architectures and setups across five datasets, encompassing short and long documents as well as unbalanced scenarios in diverse domains. Two Transformer-based large language models are also included to complement the study. The results show that i) although the effectiveness of graphs depends on the textual input features and domain, simple graph constructions perform better the longer the documents are, ii) graph representations are especially beneficial for longer documents, outperforming Transformer-based models, iii) graph methods are particularly efficient at solving the task.
Subjects

N/A

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual

EXTENSIÓN Y CULTURA

  • Dirección General de Comunicaciones
  • Dirección General de Vinculación con el Medio
  • Oficina de Asuntos Internacionales
  • Red de Ex-Alumnos
  • Noticias USM
  • Eventos USM
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback