Repository logo
Acerca de Depósito
  • Español
  • English
Log In
  1. Home
  2. Productividad Cientifica
  3. Artículos
  4. Energy Efficiency Monitoring in a Coal Boiler Based on Optical Variables and Artificial Intelligence
 
  • Details

Energy Efficiency Monitoring in a Coal Boiler Based on Optical Variables and Artificial Intelligence

Journal
IFAC-PapersOnLine
Date Issued
2017-07-01
Author(s)
Garcés, Hugo O.
Abreu, José
Gómez, Pedro
Carrasco, Claudia
Arias, Luis  
Rojas, Alejandro J.
Fuentes, Andres  
Departamento de Industrias  
DOI
10.1016/j.ifacol.2017.08.2209
Abstract
In this work, we present the fundamentals of the estimation of the energy efficiency in an industrial coal boiler based in novel optical combustion diagnostics variables and several machine learning regression methods. The total radiation Radt and flame temperature Tf were considered. The inclusion of those variables allows to increase the overall performance in the estimation of the energy efficiency. The comparison in the performance of the tested methods for regression, suggest that Extreme Learning Machines in combination with Partial Least Squares for regression, lead to the best performance with a Pearson correlation coefficient R ≈ 0.7 in the test data set.
Subjects

Process control appli...

Monitoring

Performance assessmen...

Modeling

Simulation of power s...

Nonlinear system iden...

Fuzzy

Neural systems releva...

Identification

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual

EXTENSIÓN Y CULTURA

  • Dirección General de Comunicaciones
  • Dirección General de Vinculación con el Medio
  • Oficina de Asuntos Internacionales
  • Red de Ex-Alumnos
  • Noticias USM
  • Eventos USM
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback