On Brannan's coefficient conjecture and applications
Journal
Glasgow Mathematical Journal
ISSN
0017-0895
Date Issued
2007-01-01
Author(s)
Ruscheweyh, Stephan
DOI
10.1017/S0017089507003400
Abstract
<jats:title>Abstract.</jats:title><jats:p>D. Brannan's conjecture says that for 0 <α,β≤1, |<jats:italic>x</jats:italic>|=1, and <jats:italic>n</jats:italic>∈<jats:monospace>N</jats:monospace> one has |<jats:italic>A</jats:italic><jats:sub>2<jats:italic>n</jats:italic>−1</jats:sub>(α,β,<jats:italic>x</jats:italic>)|≤|<jats:italic>A</jats:italic><jats:sub>2<jats:italic>n</jats:italic>−1</jats:sub>(α,β,1)|, where
<jats:disp-formula><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" position="float" xlink:type="simple" xlink:href="S0017089507003400_eqnU1" /></jats:disp-formula>
We prove this for the case α=β, and also prove a differentiated version of the Brannan conjecture. This has applications to estimates for Gegenbauer polynomials and also to coefficient estimates for univalent functions in the unit disk that are ‘starlike with respect to a boundary point’. The latter application has previously been conjectured by H. Silverman and E. Silvia. The proofs make use of various properties of the Gauss hypergeometric function.</jats:p>
<jats:disp-formula><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" mimetype="image" position="float" xlink:type="simple" xlink:href="S0017089507003400_eqnU1" /></jats:disp-formula>
We prove this for the case α=β, and also prove a differentiated version of the Brannan conjecture. This has applications to estimates for Gegenbauer polynomials and also to coefficient estimates for univalent functions in the unit disk that are ‘starlike with respect to a boundary point’. The latter application has previously been conjectured by H. Silverman and E. Silvia. The proofs make use of various properties of the Gauss hypergeometric function.</jats:p>
Subjects
File(s)![Thumbnail Image]()
Loading...
Name
On_Brannans_coefficient_conjecture_and_applicatio.pdf
Size
114.41 KB
Format
Adobe PDF
Checksum
(MD5):6a4f96bb2ae84c3e877dab8faa9fbaa5