Now showing 1 - 2 of 2
  • Publication
    Sequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model
    Abstract Extended scalar and fermion sectors offer new opportunities for generating the observed strong hierarchies in the fermion mass and mixing patterns of the Standard Model (SM). In this work, we elaborate on the prospects of a particular extension of the Inert Higgs doublet model where the SM hierarchies are generated sequentially by radiative virtual corrections in a fully renormalisable way, i.e. without adding any non-renormalisable Yukawa terms or soft-breaking operators to the scalar potential. Our model has a potential to explain the recently observed R K and R K∗ anomalies, thanks to the non universal U1X assignments of the fermionic fields that yield non universal Z′ couplings to fermions. We explicitly demonstrate the power of this model for generating the realistic quark, lepton and neutrino mass spectra. In particular, we show that due to the presence of both continuous and discrete family symmetries in the considered framework, the top quark acquires a tree-level mass, lighter quarks and leptons get their masses at one- and two-loop order, while neutrino masses are generated at three-loop level. The minimal field content, particle spectra and scalar potential of this model are discussed in detail.
  • Publication
    How low-scale trinification sheds light in the flavor hierarchies, neutrino puzzle, dark matter, and leptogenesis
    (2020-11-06) ;
    Huong, D. T.
    ;
    ;
    Morais, António P.
    ;
    Pasechnik, Roman
    ;
    We propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficient leptogenesis. The proposed theory is based on the trinification SUð3ÞC × SUð3ÞL × SUð3ÞR gauge symmetry, which is supplemented with an additional flavor symmetry Uð1ÞX × Zð1Þ 2 × Zð2Þ 2 . In the proposed model the top quark and the exotic fermions acquire tree-level masses, whereas the lighter SM charged fermions gain masses radiatively at one-loop level. In addition, the light active neutrino masses arise from a combination of radiative and type-I seesaw mechanisms, with the Dirac neutrino mass matrix generated at one-loop level