Options
Palme, Massimo
Robustness of residential houses in Ecuador in the face of global warming: Prototyping and simulation studies in the Amazon, coastal and Andes macroclimatic regions
2017-01-01, Palme, Massimo, Lobato, Andrea
Ecuador is starting to consider climate change as a priority for the country development. Recently, was founded the Sub-secretariat for climate change, and many Ministry started to insert related topic in the political agenda. Particularly, Urban Development and Housing Ministry, MIDUVI, launched in 2011 the competition “Dwellings for climate change” in order to improve the basic social house that is still constructing in all the climates of the country. For instance, Ecuador, even small, has a unique climatic diversity: in the Andes the climate is tropical mountain, in the Amazons is tropical wet and in the Coast is hot, both arid and humid, depending on the specific position. One of the competition goals was to put in evidence the need of different design for each climate, even for social dwellings, that have to be very cheap. The National Institute of Energy Efficiency and Renewable Energy (INER) is also developing some prototypes for the different climates of Ecuador [1]. In this paper, a simulation study has been conducted in order to estimate the discomfort hours (both undercooling and overheating) that inhabitants could feel in the base case (the actual MIDUVI social house) and in the three competition winner prototypes. Simulations have been conducted for the climate of nowadays (Typical Meteorological Year –TMY) and for the future (2050 and 2080) taking into account the global warming effect under the Intergovernmental Panel for Climate Change (IPCC) A2 scenario. Because of in Ecuador heating and air-conditioning systems are used only by a small part of the population (the richer one), the analysis was conducted thinking in naturally ventilated buildings, searching for the total discomfort hours during the year.
Analysis of Solar Chimneys in Different Climate Zones - Case of Social Housing in Ecuador
2017-11-04, Godoy-Vaca, Luis, Almaguer, Manuel, Martínez, Javier, Lobato, Andrea, Palme, Massimo
The aim of this research is to simulate the performance of a solar chimney located in different macro-zones in Ecuador. The proposed solar chimney model was simulated using a python script in order to predict the temperature distribution and the mass flow over time. The results obtained were firstly compared with experimental data for dry-warm climate. Then, the model was evaluated and tested in real weather conditions: dry-warm, moist-warm and rainycold. In addition, the assumed chimney dimensions were chosen according to the literature for the studied conditions. In spite of evaluating the best nightly ventilation, different chimney wall materials were tested: solid brick, common brick and reinforced concrete. The results showed that concrete in a dry-warm climate, a metallic layer on the gap with solid brick in a moist–warm climate and reinforced concrete in a rainy cold climate used for the absorbent wall improve the thermal inertia of the social housing.