Now showing 1 - 3 of 3
  • Publication
    A heat vulnerability index: Spatial patterns of exposure, sensitivity and adaptive capacity for Santiago de Chile
    (2016-09-01)
    Inostroza, Luis
    ;
    ;
    De La Barrera, Francisco
    ;
    Jeffrey Shaman
    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making.
    Scopus© Citations 145
  • Publication
    Key Parameters for Urban Heat Island Assessment in A Mediterranean Context: A Sensitivity Analysis Using the Urban Weather Generator Model
    (2017-11-04)
    Salvati, Agnese
    ;
    ;
    Inostroza, Luis
    Although Urban Heat Island (UHI) is a fundamental effect modifying the urban climate, being widely studied, the relative weight of the parameters involved in its generation is still not clear. This paper investigates the hierarchy of importance of eight parameters responsible for UHI intensity in the Mediterranean context. Sensitivity analyses have been carried out using the Urban Weather Generator model, considering the range of variability of: 1) city radius, 2) urban morphology, 3) tree coverage, 4) anthropogenic heat from vehicles, 5) building’s cooling set point, 6) heat released to canyon from HVAC systems, 7) wall construction properties and 8) albedo of vertical and horizontal surfaces. Results show a clear hierarchy of significance among the considered parameters; the urban morphology is the most important variable, causing a relative change up to 120% of the annual average UHI intensity in the Mediterranean context. The impact of anthropogenic sources of heat such as cooling systems and vehicles is also significant. These results suggest that urban morphology parameters can be used as descriptors of the climatic performance of different urban areas, easing the work of urban planners and designers in understanding a complex physical phenomenon, such as the UHI.
    Scopus© Citations 31
  • Publication
    Natural Ventilation: A Mitigation Strategy to Reduce Overheating in Buildings under Urban Heat Island Effect in South American Cities
    (2017-11-04) ;
    Carrasco, Claudio
    ;
    Ángel Gálvez, Miguel
    ;
    Inostroza, Luis
    Urban heat island effect often produces an increase of overheating sensation inside of buildings. To evacuate this heat, the current use of air conditioning increases the energy consumption of buildings. As a good alternative, natural ventilation is one of the best strategies to obtain indoor comfort conditions, even in summer season, if buildings and urban designs are appropriated. In this work, the overheating risk of a small house is evaluated in four South American cities: Guayaquil, Lima, Antofagasta and Valparaíso, with and without considering the UHI effect. Then, natural ventilation is assessed in order to understand the capability of this passive strategy to assure comfort inside the house. Results show that an important portion of the indoor heat can be evacuated, however the temperature rising (especially during the night) due to UHI can generate a saturation effect if appropriate technical solutions, like the increase in the air speed that can be obtained with good urban design, are not considered.
    Scopus© Citations 7