Options
Urtubia Urbina, Alejandra Pamela
Native yeasts and lactic acid bacteria isolated from spontaneous fermentation of seven grape cultivars from the maule region (Chile)
2021-08-01, Franco, Wendy, Benavides, Sergio, Valencia, Pedro, Ramirez Bustos, Cristian Alejandro, Urtubia Urbina, Alejandra Pamela
Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.
Evaluation of Indigenous Candida oleophila and Candida boidinii in Monoculture and Sequential Fermentations: Impact on Ethanol Reduction and Chemical Profile in Chilean Sauvignon Blanc Wines
2022-03-01, Benavides, Sergio, Franco, Wendy, Ceppi De Lecco, Consuelo, Durán, Angélica, Urtubia Urbina, Alejandra Pamela
The study of non-Saccharomyces yeasts in wine fermentations allows the exploration of new alternatives for the reduction of ethanol in wines. The objective of this work was to evaluate the fermentation capacity of two indigenous Candida yeasts (C. oleophila and C. boidinii) in monoculture and sequential fermentations (laboratory and microvinification scale) to produce Chilean Sauvignon Blanc wine. Fermentations were monitored by the determination of ethanol, glycerol, organic acids, and residual sugars. The results indicated that at the laboratory scale for both the monoculture and sequential fermentations it was possible to reduce the ethanol concentration on 0.77% v/v (monoculture) and 1.5% v/v (sequential) for C. oleophila and 0.50% v/v (monoculture) and 0.04% v/v (sequential) for C. boidinii compared to S. cerevisiae (12.87% v/v). Higher glycerol concentrations were produced in monoculture than sequential fermentations (C. oleophila: 9.47 g/L and C. boidinii 10.97 g/L). For microvinifications, the monoculture and sequential fermentations with C. boidinii managed to reduce ethanol content by 0.17% v/v and 0.54% v/v, respectively, over the S. cerevisiae control (13.74% v/v). In the case of C. oleophila, the reduction was only observed in sequential fermentations with 0.62% v/v. Interestingly, grapes with higher sugar concentration resulted in wines with lees ethanol concentrations. This might be associated to the use of C. oleophila (13.12% v/v) and C. boidinii (13.20% v/v) in sequential fermentations microvinification scale.
Recycling and conversion of yeasts into organic nitrogen sources for wine fermentation: Effects on molecular and sensory attributes
2021-12-01, Rojas, Paula, Lopez, Daniel, Ibañez, Francisco, Urbina, Camila, Franco, Wendy, Urtubia, Alejandra, Valencia, Pedro
Organic nitrogen plays a significant role in the fermentation performance and production of esters and higher alcohols. This study assessed the use of yeast protein hydrolysate (YPH) as a nitrogen source for grape must fermentation. In this study, we prepared an enzymatic protein hydrolysate using yeasts recovered from a previous fermentation of wine. Three treatments were performed. DAP supplementation was used as a control, while two YPH treatments were used. Low (LDH) and high degrees of hydrolysis (HDH), 3.5% and 10%, respectively, were chosen. Gas chromatography and principal component analysis indicated a significant positive influence of YPH-supplementations on the production of esters and higher alcohols. Significantly high concentrations of 3-methyl-1-penthanol, isoamyl alcohol, isobutanol, and 2-phenylethanol were observed. Significant odorant activity was obtained for 3-methyl-1-pentanol and ethyl-2-hexenoate. The use of YPH as nitrogen supplementation is justified as a recycling yeasts technique by the increase in volatile compounds.