Options
Toloza Castillo, Odette Fabiola
A planetesimal orbiting within the debris disc around a white dwarf star
2019-04-05, Manser, Christopher J., Gänsicke, Boris T., Eggl, Siegfried, Hollands, Mark, Izquierdo, Paula, Koester, Detlev, Landstreet, John D., Lyra, Wladimir, Marsh, Thomas R., Meru, Farzana, Mustill, Alexander J., RodrĂguez-Gil, Pablo, Toloza, Odette, Veras, Dimitri, Wilson, David J., Burleigh, Matthew R., Davies, Melvyn B., Farihi, Jay, Fusillo, Nicola Gentile, de Martino, Domitilla, Parsons, Steven G., Quirrenbach, Andreas, Raddi, Roberto, Reffert, Sabine, Santo, Melania Del, Schreiber, Matthias R., Silvotti, Roberto, Toonen, Silvia, Villaver, Eva, Wyatt, Mark, Xu, Siyi, Zwart, Simon Portegies
A low-mass planet around a white dwarf Numerous exoplanets have been detected around Sun-like stars. These stars end their lives as white dwarfs, which should inherit any surviving planetary systems. Manser et al. found periodic shifts in emission lines from a disc of gas orbiting around a white dwarf (see the Perspective by Fossati). They used numerical simulations to show that the most likely explanation for the spectral shifts is a low-mass planet orbiting within the disc. The planet must be unusually small and dense to avoid being ripped apart by tidal forces. The authors speculate that it may be the leftover core of a planet whose outer layers have been removed. Science , this issue p. 66 ; see also p. 25
White dwarf pollution by hydrated planetary remnants: Hydrogen and metals in WD J204713.76-125908.9
2020-11-01, Hoskin, Matthew J., Toloza, Odette, Gänsicke, Boris T., Raddi, Roberto, Koester, Detlev, Pala, Anna F., Manser, Christopher J., Farihi, Jay, Belmonte, Maria Teresa, Hollands, Mark, Fusillo, Nicola Gentile, Swan, Andrew
ABSTRACT WD J204713.76–125908.9 is a new addition to the small class of white dwarfs with helium-dominated photospheres that exhibit strong Balmer absorption lines and atmospheric metal pollution. The exceptional abundances of hydrogen observed in these stars may be the result of accretion of water-rich rocky bodies. We obtained far-ultraviolet and optical spectroscopy of WD J204713.76–125908.9 using the Cosmic Origin Spectrograph on-board the Hubble Space Telescope and X-shooter on the Very Large Telescope, and identify photospheric absorption lines of nine metals: C, O, Mg, Si, P, S, Ca, Fe, and Ni. The abundance ratios are consistent with the steady-state accretion of exo-planetesimal debris rich in the volatile elements carbon and oxygen, and the transitional element sulphur, by factors of 17, 2, and 4, respectively, compared to the bulk Earth. The parent body has a composition akin to Solar system carbonaceous chondrites, and the inferred minimum mass, 1.6 × 1020 g, is comparable to an asteroid 23 km in radius. We model the composition of the disrupted parent body, finding from our simulations a median water mass fraction of 8 per cent.