Options
Schmidt, Ivan
Loading...
Nombre
Schmidt, Ivan
Departamento
Campus / Sede
Campus Casa Central Valparaíso
Email
ORCID
Scopus Author ID
7103297631
Now showing 1 - 3 of 3
- PublicationSequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model(2019-06-01)
; ;Pasechnik, Roman; Abstract Extended scalar and fermion sectors offer new opportunities for generating the observed strong hierarchies in the fermion mass and mixing patterns of the Standard Model (SM). In this work, we elaborate on the prospects of a particular extension of the Inert Higgs doublet model where the SM hierarchies are generated sequentially by radiative virtual corrections in a fully renormalisable way, i.e. without adding any non-renormalisable Yukawa terms or soft-breaking operators to the scalar potential. Our model has a potential to explain the recently observed R K and R K∗ anomalies, thanks to the non universal U1X assignments of the fermionic fields that yield non universal Z′ couplings to fermions. We explicitly demonstrate the power of this model for generating the realistic quark, lepton and neutrino mass spectra. In particular, we show that due to the presence of both continuous and discrete family symmetries in the considered framework, the top quark acquires a tree-level mass, lighter quarks and leptons get their masses at one- and two-loop order, while neutrino masses are generated at three-loop level. The minimal field content, particle spectra and scalar potential of this model are discussed in detail. - PublicationHow low-scale trinification sheds light in the flavor hierarchies, neutrino puzzle, dark matter, and leptogenesis(2020-11-06)
; ;Huong, D. T.; ;Morais, António P. ;Pasechnik, RomanWe propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficient leptogenesis. The proposed theory is based on the trinification SUð3ÞC × SUð3ÞL × SUð3ÞR gauge symmetry, which is supplemented with an additional flavor symmetry Uð1ÞX × Zð1Þ 2 × Zð2Þ 2 . In the proposed model the top quark and the exotic fermions acquire tree-level masses, whereas the lighter SM charged fermions gain masses radiatively at one-loop level. In addition, the light active neutrino masses arise from a combination of radiative and type-I seesaw mechanisms, with the Dirac neutrino mass matrix generated at one-loop level - PublicationVector mesons in nuclear μ--e- conversion(2004-06-17)
;Faessler, Amand ;Gutsche, Th; ; ; Šimkovic, F.We study nuclear µ−–e− conversion in the general framework of an effective Lagrangian approach without referring to any specific realization of the physics beyond the Standard Model (SM) responsible for lepton flavor violation (L/f ). We show that vector meson exchange between lepton and nucleon currents plays an important role in this process. A new issue of this mechanism is the presence of the strange quark vector current contribution induced by the φ meson. This allows us to extract new limits on the L/f lepton–quark effective couplings from the existing experimental data.Scopus© Citations 15