###### Options

# Dib Venturelli, Claudio Omar

Loading...

Nombre

Dib Venturelli, Claudio Omar

Departamento

Campus / Sede

Campus Casa Central Valparaíso

Email

ORCID

Scopus Author ID

56187198900

17 results

Now showing 1 - 10 of 17

- PublicationProbing R-parity violation in B-meson decays to a baryon and a light neutralino(2023-02-01)
; ;Helo, Juan Carlos ;Lyubovitskij, Valery E. ;Neill, Nicolás A. ;Soffer, AbnerWang, Zeren SimonAbstract We propose a search for B meson decays to a baryon plus missing energy at the Belle II experiment to probe supersymmetry with a GeV-scale lightest neutralino $$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 and R-parity violation (RPV). We perform analytic computations of the signal branching fractions in the framework of effective field theory, with a single nonzero RPV operator $$ {\lambda}_{ij3}^{\prime \prime }{\overline{U}}_i^c{\overline{D}}_j^c{\overline{D}}_3^c $$ λ ij 3 ′ ′ U ¯ i c D ¯ j c D ¯ 3 c , where i, j = 1, 2. The hadronic form factors are calculated using an SU(3) phenomenological Lagrangian approach for the proton, as well as several hyperons and charmed baryons. Since the decay of the neutralino is kinematically and CKM suppressed in this theoretical scenario, it decays outside the detector and appears experimentally only as missing energy. We detail the analysis techniques at the experimental level and estimate the background in the $$ {B}^{+}\to p{\overset{\sim }{\chi}}_1^0 $$ B + → p χ ~ 1 0 search using published results for $$ {B}^{+}\to {K}^{+}\nu \overline{\nu} $$ B + → K + ν ν ¯ . Our final sensitivity plots are shown for both $$ {\lambda}_{113}^{\prime \prime } $$ λ 113 ′ ′ versus the squark mass $$ {m}_{\tilde{q}} $$ m q ~ and $$ {\lambda}_{113}^{\prime \prime }/{m}_{\tilde{q}}^2 $$ λ 113 ′ ′ / m q ~ 2 versus the neutralino mass $$ {m}_{{\overset{\sim }{\chi}}_1^0} $$ m χ ~ 1 0 . We find that the search at Belle II could probe $$ {\lambda}_{113}^{\prime \prime }/{m}_{\tilde{q}}^2 $$ λ 113 ′ ′ / m q ~ 2 down to the order of 10−8 GeV−2 in the kinematically allowed $$ {m}_{{\overset{\sim }{\chi}}_1^0} $$ m χ ~ 1 0 range. We also obtain current limits on $$ {\lambda}_{123}^{\prime \prime } $$ λ 123 ′ ′ by recasting an existing search interpreted as $$ {B}^0\to {\Lambda}^0{\overset{\sim }{\chi}}_1^0 $$ B 0 → Λ 0 χ ~ 1 0 , and comment about searches for $$ {B}^{+}\to {\Sigma}^{+}{\overset{\sim }{\chi}}_1^0 $$ B + → Σ + χ ~ 1 0 , $$ {B}^0\to {\Sigma}^0{\chi}_1^0 $$ B 0 → Σ 0 χ 1 0 , $$ {B}^{+}\to {\Lambda}_c^{+}{\overset{\sim }{\chi}}_1^0 $$ B + → Λ c + χ ~ 1 0 , and $$ {B}^{+}\to {\Xi}_c^{+}{\overset{\sim }{\chi}}_1^0 $$ B + → Ξ c + χ ~ 1 0 . In closing, we briefly discuss potential searches at the LHCb and BESIII experiments. - PublicationBounds on lepton flavor violating physics and decays of neutral mesons from τ (μ) →3â.,", â.,"γγ -decays(2019-02-01)
; ;Gutsche, Thomas ;Kovalenko, Sergey G. ;Lyubovitskij, Valery E.We study two- and three-body lepton flavor violating (LFV) decays involving leptons and neu- tral vector bosons V = ρ0, ω, φ, J/ψ, Υ, Z0, as well as pseudoscalar P = π0, η, η′, ηc and scalar S = f0(500), f0(980), a0(980), χc0(1P ) mesons, without referring to a specific mechanism of LFV realization. In particular, we relate the rates of the three-body LFV decays τ (μ) → 3`, where ` = μ or e, to the two-body LFV decays (V, P ) → τ μ(τ e, μe), where V and P play the role of intermediate resonances in the decay process τ (μ) → 3`. From the experimental upper bounds for the branching ratios of τ (μ) → 3` decays, we derive upper limits for the branching ratios of (V, P ) → τ μ(τ e, μe). We compare our results to the available experimental data and known theoretical upper limits from previous studies of LFV processes and find that some of our limits are several orders of magnitude more stringent. Using the idea of quark-hadron duality, we extract limits on various quark-lepton dimension-six LFV operators from data on lepton decays. Some of these limits are either new or stronger than those existing in the literature. - PublicationSearch for sterile neutrinos decaying into pions at the LHC(2018-02-01)
; ;Kim, C. S. ;Neill, Nicolás A.Yuan, Xing BoWe study the possibility to observe sterile neutrinos with masses in the range between 5 GeV and 20 GeV at the LHC, using the exclusive semileptonic modes involving pions, namely W to lepton + N to n pions + lepton+lepton (n = 1, 2, 3). The two pion and three pion modes require extrapolations of form factors to large time-like q2, which we do using vector dominance models as well as light front holographic QCD, with remarkable agreement. This mass region is difficult to explore with inclusive dilepton+dijet modes or trilepton modes and impossible to explore in rare meson decays. While particle identification is a real challenge in these modes, vertex displacement due to the long living neutrino in the above mass range can greatly help reduce backgrounds. Assuming a sample of 109 W bosons at the end of the LHC Run 2, these modes could discover a sterile neutrino in the above mass range or improve the current bounds on the heavy-to-light lepton mixings by an order of magnitude, U2lN∼2×10−6. Moreover, by studying the equal sign and opposite sign dileptons, the Majorana or Dirac character of the sterile neutrino may be revealed. - PublicationMajorana vs. Dirac sterile neutrinos lighter than MW at the LHC(2017-09-20)
; ;Kim, C. S. ;Wang, K.Zhang, J.We propose to study the leptonic decays W± → e±e±μ∓ν and W± → μ±μ±e∓ν at the LHC to discover sterile neutrinos with masses below MW , and discriminate their Majorana or Dirac character. These decays are induced by a sterile neutrino N that goes on mass shell in the intermediate state. We find that, even though the final (anti-)neutrino goes undetected and thus lepton number is unchecked, one can distinguish between the Majorana vs. Dirac character of the intermediate sterile neutrino by comparing the production of e±e±μ∓ vs. μ±μ±e∓, provided the N-e and N-μ mixings are different enough. Alternatively, one can also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even if the N-e and N-μ mixings are equal. - PublicationMajorana vs. Dirac sterile neutrinos at the LHC(2018-06-25)
; ;Kim, C. S. ;Wang, KechenZhang, JueWe study leptonic decays W± → e±e±μ∓ν and W± → μ±μ±e∓ν which would occur at the LHC if there exist sterile neutrinos with masses below MW . We also study ways to discriminate their Majorana or Dirac character, a rather non trivial task, because lepton number conservation cannot be checked due to the missing neutrino in the final state. We find that it is indeed possible to discriminate between Majorana vs. Dirac sterile neutrinos by comparing the production of e±e±μ∓ vs. μ±μ±e∓ if the N-e and N-μ mixings are sufficiently different. Alternatively, one could also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even for equal N-e and N-μ mixings. - PublicationSearching for a sterile neutrino that mixes predominantly with ντ at B factories(2020-05-01)
; ;Helo, J. C. ;Nayak, M. ;Neill, N. A. ;Soffer, A.Zamora-Saa, J.The phenomenon of neutrino flavor oscillations motivates searches for sterile neutrinos in a broad range of masses and mixing-parameter values. A sterile neutrino 𝑁 that mixes predominantly with the 𝜏 neutrino is particularly challenging experimentally. To address this challenge, we propose a new method to search for a 𝜈𝜏-mixing 𝑁 that is lighter than the 𝜏 lepton. The method uses the large 𝑒+𝑒−→𝜏+𝜏− samples collected at 𝐵-factory experiments to produce the 𝑁 in 𝜏-lepton decays. We exploit the long lifetime of a sterile neutrino in this mass range to suppress background and apply kinematic and vertexing constraints that enable measuring the sterile-neutrino mass. Estimates for the sensitivities of the BABAR, Belle, and Belle II experiments are calculated and presented. - PublicationSearch for heavy sterile neutrinos in trileptons at the LHC(2017-10-01)
; ;Kim, C. S.Wang, KechenWe present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W± → e± e± μ∓ ν and μ± μ± e∓ ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass mN = 20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb−1, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings |UNe|2 ∼ |UNμ|2∼ 10−6, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10−5. - PublicationComposite Resonances effects on EWPT and Higgs diphoton decay rate(2015-01-01)
;Cárcamo Hernández, A. E.; In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to γγ at the LHC is one of such signals. We study the new constraints that are imposed on composite models from , together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at , consistency with the T and S parameters and the newly observed can be found for a rather restricted range of masses of vector and axial-vector composites from 1.5 TeV to 1.7 TeV and 1.8 TeV to 1.9 TeV, respectively, and only provided a non-standard kinetic mixing between the and fields is included. - PublicationProbing Majorana Neutrinos and their CP Violation in Decays of Charged Scalar Mesons π, K, D, Ds, B, Bc(2015-01-01)
; ; ;Kim, Choong SunZamora-Saá, JilbertoSome of the outstanding questions of particle physics today concern the neutrino sector, in particular whether there are more neutrinos than those already known and whether they are Dirac or Majorana particles. There are different ways to explore these issues. In this article we describe neutrino-mediated decays of charged pseudoscalar mesons such as π±,K± and B±, in scenarios where extra neutrinos are heavy and can be on their mass shell. We discuss semileptonic and leptonic decays of such kinds. We investigate possible ways of using these decays in order to distinguish between the Dirac and Majorana character of neutrinos. Further, we argue that there are significant possibilities of detecting CP violation in such decays when there are at least two almost degenerate Majorana neutrinos involved. This latter type of scenario fits well into the known neutrino minimal standard model (νMSM) which could simultaneously explain the Dark Matter and Baryon Asymmetry of the Universe. - PublicationQuasi-Dirac neutrinos in the linear seesaw model(2022-02-21)
;Arbeláez, C.; ;Monsálvez-Pozo, K.We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of MN . MW . Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to opposite-sign dilepton ratio, R`` , can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular values of R`` are controlled by the width of the QD neutrino and its mass splitting, the latter being equal to the light-neutrino mass mν in the LSM scenario. The current upper bound on mν1 together with the projected sensitivities of current and future |UN` | 2 experimental measurements, set stringent constraints on our low-scale QD mass regime. Some experimental prospects of testing the model by LHC displaced vertex searches are also discussed.