Thesis:
Modelo multi-agente basado en aprendizaje reforzado profundo aplicado al problema de predespacho de unidades en sistemas hidrotérmicos

dc.contributor.correferenteHinojosa Mateus, Victor Hugo
dc.contributor.departmentIngeniería Electrica
dc.contributor.guiaGil Sagas, Esteban Manuel
dc.coverage.spatialCampus Casa Central Valparaíso
dc.creatorGuerra Núñez, Philip Hernán
dc.date.accessioned2025-01-20T18:45:42Z
dc.date.available2025-01-20T18:45:42Z
dc.date.issued2023-08
dc.description.abstractEste trabajo presenta una metodología para reducir el espacio de soluciones y acelerar los cálculos para el problema de predespacho de unidades (Unit Commitment, UC) en sistemas hidrotérmicos con un horizonte de tiempo de 168 horas badados en programación lineal entera mixta (Mixed-integer linear programming, MILP). La metodología branch-and-bound en problemas de UC basado en MILP enfrenta múltiples desafíos debido al aumento en el ciclaje de unidades a medida que los sistemas eléctricos reducen su huella de carbono. Con la metodología propuesta se mejora el rendimiento de los solvers aplicados al problema UC basado en MILP mediante el uso de cálculos offline y online. El modelo offline entrena un modelo multi-agente basado en aprendizaje reforzado profundo (Multi-agent deep reinforcement learning, MADRL) utilizando datos históricos de operación del sistema eléctrico para predecir el estado de encendido/apagado de unidades térmicas seleccionadas. El modelo online utiliza las soluciones binarias obtenidas por el modelo offline para resolver un problema de UC con un espacio de soluciones reducido. El enfoque multi-agente, basados en redes neuronales artificiales (Artificial Neural Networks, ANN) con una arquitectura de Red Convolucional Temporal (Temporal Convolutional Network, TCN), agrupa unidades que se encuentran en la misma región. Se utiliza una función de recompensa acumulativa compartida para ajustar simultáneamente los diferentes pesos de las ANNs durante la fase de aprendizaje. La efectividad del método propuesto se demuestra utilizando datos reales de operación del sistema eléctrico chileno, logrando tiempos de cálculo significativamente más bajos y un error que se encuentra dentro del margen de integralidad del solver.
dc.description.programMagíster en Ciencias de la Ingeniería Eléctrica
dc.format.extent45 páginas
dc.identifier.urihttps://cris.usm.cl/handle/123456789/2303
dc.language.isoes
dc.publisherUniversidad Técnica Federico Santa María
dc.rightsopen access
dc.subjectUNIT COMMITMENT
dc.subjectARTIFICIAL NEURAL NETWORKS
dc.titleModelo multi-agente basado en aprendizaje reforzado profundo aplicado al problema de predespacho de unidades en sistemas hidrotérmicos
dspace.entity.typeTesis
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MS_EMGS_2023.pdf
Size:
4.03 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: