Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Rotation plays a role in the generation of magnetic fields in single white dwarfs

2024-03-01, Hernandez, Mercedes S., Schreiber, Matthias R., Landstreet, John D., Bagnulo, Stefano, Parsons, Steven G., Chavarria, Martin, Toloza, Odette, Bell, Keaton J.

Recent surveys of close white dwarf binaries as well as single white dwarfs have provided evidence for the late appearance of magnetic fields in white dwarfs, and a possible generation mechanism, a crystallization and rotation-driven dynamo has been suggested. A key prediction of this dynamo is that magnetic white dwarfs rotate, at least on average, faster than their non-magnetic counterparts and/or that the magnetic field strength increases with rotation. Here we present rotation periods of ten white dwarfs within 40 pc measured using photometric variations. Eight of the light curves come from TESS observations and are thus not biased towards short periods, in contrast to most period estimates that have been reported previously in the literature. These TESS spin periods are indeed systematically shorter than those of non-magnetic white dwarfs. This means that the crystallization and rotation-driven dynamo could be responsible for a fraction of the magnetic fields in white dwarfs. However, the full sample of magnetic white dwarfs also contains slowly rotating strongly magnetic white dwarfs which indicates that another mechanism that leads to the late appearance of magnetic white dwarfs might be at work, either in addition to or instead of the dynamo. The fast-spinning and massive magnetic white dwarfs that appear in the literature form a small fraction of magnetic white dwarfs, and probably result from a channel related to white dwarf mergers.

No Thumbnail Available
Publication

SDSS J124043.01+671034.68: The partially burned remnant of a low-mass white dwarf that underwent thermonuclear ignition?

2020-08-01, Gänsicke, Boris T., Koester, Detlev, Raddi, Roberto, Toloza, Odette, Kepler, S. O.

ABSTRACT The white dwarf SDSS J124043.01+671034.68 (SDSS J1240+6710) was previously found to have an oxygen-dominated atmosphere with significant traces of neon, magnesium, and silicon. A possible origin via a violent late thermal pulse or binary interactions has been suggested to explain this very unusual photospheric composition. We report the additional detection of carbon, sodium, and aluminium in far-ultraviolet and optical follow-up spectroscopy. No iron-group elements are detected, with tight upper limits on titanium, iron, cobalt, and nickel, suggesting that the star underwent partial oxygen burning, but failed to ignite silicon burning. Modelling the spectral energy distribution and adopting the distance based on the Gaia parallax, we infer a low white dwarf mass, $M_\mathrm{wd}=0.41\pm 0.05\, \mathrm{M}_\odot$. The large space velocity of SDSS J1240+6710, computed from the Gaia proper motion and its radial velocity, is compatible with a Galactic rest-frame velocity of ≃ 250 km s−1 in the opposite direction with respect to the Galactic rotation, strongly supporting a binary origin of this star. We discuss the properties of SDSS J1240+6710 in the context of the recently identified survivors of thermonuclear supernovae, the D6 and LP 40−365 stars, and conclude that it is unlikely related to either of those two groups. We tentatively suggest that SDSS J1240+6710 is the partially burned remnant of a low-mass white dwarf that underwent a thermonuclear event.

No Thumbnail Available
Publication

White dwarf pollution by hydrated planetary remnants: Hydrogen and metals in WD J204713.76-125908.9

2020-11-01, Hoskin, Matthew J., Toloza, Odette, Gänsicke, Boris T., Raddi, Roberto, Koester, Detlev, Pala, Anna F., Manser, Christopher J., Farihi, Jay, Belmonte, Maria Teresa, Hollands, Mark, Fusillo, Nicola Gentile, Swan, Andrew

ABSTRACT WD J204713.76–125908.9 is a new addition to the small class of white dwarfs with helium-dominated photospheres that exhibit strong Balmer absorption lines and atmospheric metal pollution. The exceptional abundances of hydrogen observed in these stars may be the result of accretion of water-rich rocky bodies. We obtained far-ultraviolet and optical spectroscopy of WD J204713.76–125908.9 using the Cosmic Origin Spectrograph on-board the Hubble Space Telescope and X-shooter on the Very Large Telescope, and identify photospheric absorption lines of nine metals: C, O, Mg, Si, P, S, Ca, Fe, and Ni. The abundance ratios are consistent with the steady-state accretion of exo-planetesimal debris rich in the volatile elements carbon and oxygen, and the transitional element sulphur, by factors of 17, 2, and 4, respectively, compared to the bulk Earth. The parent body has a composition akin to Solar system carbonaceous chondrites, and the inferred minimum mass, 1.6 × 1020 g, is comparable to an asteroid 23 km in radius. We model the composition of the disrupted parent body, finding from our simulations a median water mass fraction of 8 per cent.

No Thumbnail Available
Publication

Systematic uncertainties in the characterization of helium-dominated metal-polluted white dwarf atmospheres

2023-04-01, Izquierdo, Paula, Gänsicke, Boris T., Rodríguez-Gil, Pablo, Koester, Detlev, TOLOZA CASTILLO, ODETTE FABIOLA, Gentile Fusillo, Nicola P., Pala, Anna F., Tremblay, Pier Emmanuel

Abstract White dwarf photospheric parameters are usually obtained by means of spectroscopic or photometric analysis. These results are not always consistent with each other, with the published values often including just the statistical uncertainties. The differences are more dramatic for white dwarfs with helium-dominated photospheres, so to obtain realistic uncertainties we have analysed a sample of 13 of these white dwarfs, applying both techniques to up to three different spectroscopic and photometric data sets for each star. We found mean standard deviations of $\left\langle \sigma {T_{\mathrm{eff}}}\right\rangle = 524$ K, $\left\langle \sigma {\log g}\right\rangle = 0.27$ dex and $\left\langle \sigma {\log (\mathrm{H/He})}\right\rangle = 0.31$ dex for the effective temperature, surface gravity, and relative hydrogen abundance, respectively, when modelling diverse spectroscopic data. The photometric fits provided mean standard deviations up to $\left\langle \sigma {T_{\mathrm{eff}}}\right\rangle = 1210$ K and $\left\langle \sigma {\log g}\right\rangle = 0.13$ dex. We suggest these values to be adopted as realistic lower limits to the published uncertainties in parameters derived from spectroscopic and photometric fits for white dwarfs with similar characteristics. In addition, we investigate the effect of fitting the observational data adopting three different photospheric chemical compositions. In general, pure helium model spectra result in larger Teff compared to those derived from models with traces of hydrogen. The log g shows opposite trends: smaller spectroscopic values and larger photometric ones when compared to models with hydrogen. The addition of metals to the models also affects the derived atmospheric parameters, but a clear trend is not found.

No Thumbnail Available
Publication

Horizontal spreading of planetary debris accreted by white dwarfs

2021-05-01, Cunningham, Tim, Tremblay, Pier Emmanuel, Bauer, Evan B., Toloza, Odette, Cukanovaite, Elena, Koester, Detlev, Farihi, Jay, Freytag, Bernd, G¨ansicke, Boris T., Ludwig, Hans G¨unter, Veras, Dimitri

ABSTRACT White dwarfs with metal-polluted atmospheres have been studied widely in the context of the accretion of rocky debris from evolved planetary systems. One open question is the geometry of accretion and how material arrives and mixes in the white dwarf surface layers. Using the three-dimensional (3D) radiation hydrodynamics code co5bold, we present the first transport coefficients in degenerate star atmospheres that describe the advection–diffusion of a passive scalar across the surface plane. We couple newly derived horizontal diffusion coefficients with previously published vertical diffusion coefficients to provide theoretical constraints on surface spreading of metals in white dwarfs. Our grid of 3D simulations probes the vast majority of the parameter space of convective white dwarfs, with pure-hydrogen atmospheres in the effective temperature range of 6000–18 000 K and pure-helium atmospheres in the range of 12 000–34 000 K. Our results suggest that warm hydrogen-rich atmospheres (DA; ${\gtrsim} 13\, 000$ K) and helium-rich atmospheres (DB and DBA; ${\gtrsim} 30\, 000$ K) are unable to efficiently spread the accreted metals across their surface, regardless of the time dependence of accretion. This result may be at odds with the current non-detection of surface abundance variations in white dwarfs with debris discs. For cooler hydrogen- and helium-rich atmospheres, we predict a largely homogeneous distribution of metals across the surface within a vertical diffusion time-scale. This is typically less than 0.1 per cent of disc lifetime estimates, a quantity that is revisited in this paper using the overshoot results. These results have relevance for studies of the bulk composition of evolved planetary systems and models of accretion disc physics.