Options
Dib Venturelli, Claudio Omar
Loading...
Nombre
Dib Venturelli, Claudio Omar
Departamento
Campus / Sede
Campus Casa Central Valparaíso
Email
ORCID
Scopus Author ID
56187198900
Now showing 1 - 10 of 12
- PublicationThe experimental facility for the Search for Hidden Particles at the CERN SPS(2019-03-25)
;Ahdida, C. ;Albanese, R. ;Alexandrov, A. ;Anokhina, A. ;Aoki, S. ;Arduini, G. ;Atkin, E. ;Azorskiy, N. ;Back, J. J. ;Bagulya, A. ;Santos, F. Baaltasar Dos ;Baranov, A. ;Bardou, F. ;Barker, G. J. ;Battistin, M. ;Bauche, J. ;Bay, A. ;Bayliss, V. ;Bencivenni, G. ;Berdnikov, A. Y. ;Berdnikov, Y. A. ;Berezkina, I. ;Bertani, M. ;Betancourt, C. ;Bezshyiko, I. ;Bezshyyko, O. ;Bick, D. ;Bieschke, S. ;Blanco, A. ;Boehm, J. ;Bogomilov, M. ;Bondarenko, K. ;Bonivento, W. M. ;Borburgh, J. ;Boyarsky, A. ;Brenner, R. ;Breton, D. ;Brundler, R. ;Bruschi, M. ;Büscher, V. ;Buonaura, A. ;Buontempo, S. ;Cadeddu, S. ;Calcaterra, A. ;Calviani, M. ;Campanelli, M. ;Casolino, M. ;Charitonidis, N. ;Chau, P. ;Chauveau, J. ;Chepurnov, A. ;Chernyavskiy, M. ;Choi, K. Y. ;Chumakov, A. ;Ciambrone, P. ;Cornelis, K. ;Cristinziani, M. ;Crupano, A. ;Dallavalle, G. M. ;Datwyler, A. ;D'ambrosio, N. ;D'appollonio, G. ;Saraiva, J. De Carvalho ;Lellis, G. De ;De Magistris, M. ;Roeck, A. De ;De Serio, M. ;De Simone, D. ;Dedenko, L. ;Dergachev, P. ;Di Crescenzo, A. ;Di Marco, N.; ;Dmitrievskiy, S. ;Dougherty, L. A. ;Dolmatov, A. ;Domenici, D. ;Donskov, S. ;Drohan, V. ;Dubreuil, A. ;Ebert, J. ;Enik, T. ;Etenko, A. ;Fabbri, F. ;Fabbri, L. ;Fabich, A. ;Fedin, O. ;Fedotovs, F. ;Felici, G. ;Ferro-Luzzi, M. ;Filippov, K. ;Fini, R. A. ;Fonte, P. ;Franco, C. ;V. Lyubovitskij; Froeschl, R.The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV c proton beam offers a unique opportunity to explore the Hidden Sector [1–3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles with masses up to O¹10º GeV c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background. - PublicationANDES: An Underground Laboratory in South America(2015-01-01)ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.
- PublicationBounds on lepton flavor violating physics and decays of neutral mesons from τ (μ) →3â.,", â.,"γγ -decays(2019-02-01)
; ;Gutsche, Thomas ;Kovalenko, Sergey G. ;Lyubovitskij, Valery E.We study two- and three-body lepton flavor violating (LFV) decays involving leptons and neu- tral vector bosons V = ρ0, ω, φ, J/ψ, Υ, Z0, as well as pseudoscalar P = π0, η, η′, ηc and scalar S = f0(500), f0(980), a0(980), χc0(1P ) mesons, without referring to a specific mechanism of LFV realization. In particular, we relate the rates of the three-body LFV decays τ (μ) → 3`, where ` = μ or e, to the two-body LFV decays (V, P ) → τ μ(τ e, μe), where V and P play the role of intermediate resonances in the decay process τ (μ) → 3`. From the experimental upper bounds for the branching ratios of τ (μ) → 3` decays, we derive upper limits for the branching ratios of (V, P ) → τ μ(τ e, μe). We compare our results to the available experimental data and known theoretical upper limits from previous studies of LFV processes and find that some of our limits are several orders of magnitude more stringent. Using the idea of quark-hadron duality, we extract limits on various quark-lepton dimension-six LFV operators from data on lepton decays. Some of these limits are either new or stronger than those existing in the literature.Scopus© Citations 6 - PublicationMajorana vs. Dirac sterile neutrinos lighter than MW at the LHC(2017-09-20)
; ;Kim, C. S. ;Wang, K.Zhang, J.We propose to study the leptonic decays W± → e±e±μ∓ν and W± → μ±μ±e∓ν at the LHC to discover sterile neutrinos with masses below MW , and discriminate their Majorana or Dirac character. These decays are induced by a sterile neutrino N that goes on mass shell in the intermediate state. We find that, even though the final (anti-)neutrino goes undetected and thus lepton number is unchecked, one can distinguish between the Majorana vs. Dirac character of the intermediate sterile neutrino by comparing the production of e±e±μ∓ vs. μ±μ±e∓, provided the N-e and N-μ mixings are different enough. Alternatively, one can also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even if the N-e and N-μ mixings are equal. - PublicationMajorana vs. Dirac sterile neutrinos at the LHC(2018-06-25)
; ;Kim, C. S. ;Wang, KechenZhang, JueWe study leptonic decays W± → e±e±μ∓ν and W± → μ±μ±e∓ν which would occur at the LHC if there exist sterile neutrinos with masses below MW . We also study ways to discriminate their Majorana or Dirac character, a rather non trivial task, because lepton number conservation cannot be checked due to the missing neutrino in the final state. We find that it is indeed possible to discriminate between Majorana vs. Dirac sterile neutrinos by comparing the production of e±e±μ∓ vs. μ±μ±e∓ if the N-e and N-μ mixings are sufficiently different. Alternatively, one could also distinguish the Majorana vs. Dirac character by studying the energy spectra of the opposite charge lepton, a method that works even for equal N-e and N-μ mixings. - PublicationThe effect of composite resonances on Higgs decay into two photons(2014-01-01)
;Cárcamo Hernández, A. E.; In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to $\gamma \gamma$ at the LHC is one of such signals. We study the new constraints that are imposed on composite models from $H\to \gamma\gamma$, together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at $\Lambda = 4\pi v \sim 3 $ TeV, consistency with the $T$ and $S$ parameters and the newly observed $H\to \gamma \gamma$ can be found for a rather restricted range of masses of vector and axial-vector composites from $1.5$ TeV to $1.7$ TeV and $1.8$ TeV to $1.9$ TeV, respectively, and only provided a non-standard kinetic mixing between the $W^{3}$ and $B^{0}$ fields is included.Scopus© Citations 16 - PublicationCP violation with Majorana neutrinos in K meson decays(2015-01-01)
; ;Campos, MiguelKim, C. S.We study the possibility of having CP asymmetries in the decay K± → π ∓` ±` ± (` = e, µ). This decay violates Lepton Number by two units and occurs only if there are Majorana particles that mediate the transition. Even though the absolute rate is highly suppressed by current bounds, we search for Majorana neutrino scenarios where the CP asymmetry arising from the lepton sector could be sizeable. This is indeed the case if there are two or more Majorana neutrinos with similar masses in the range around 102 MeV. In particular, the asymmetry is potentially near unity if two neutrinos are nearly degenerate, in the sense ∆mN ∼ ΓN . The full decay, however, may be difficult to detect not only because of the suppression caused by the heavy-to-light lepton mixing, but also because of the long lifetime of the heavy neutrino, which would induce large space separation between the two vertices where the charge leptons are produced. This particular problem should be less serious in heavier meson decays, as they involve heavier neutrinos with shorter lifetimes.Scopus© Citations 26 - PublicationProbing the Dirac or Majorana nature of the heavy neutrinos in pure leptonic decays at the LHC(2018-03-01)
;Arbelaéz, Carolina; ; Vasquez, Juan CarlosWe propose a strategy for distinguishing the Dirac / Majorana character of heavy neutrinos with masses below the W boson mass, using purely leptonic decays at the LHC. The strategy makes use of a forward-backward asymmetry of the opposite charge lepton in the W+→l+l+l′−ν decay. In order to check the experimental feasibility of the model, we show, through a numerical analysis, that in the decay W+→e+e+μ−ν the two positrons in the final state can be distinguished for different ranges of the heavy neutrino masses. Finally, we estimated the number of events of W+→e+e+μ−ν for a Dirac and Majorana N neutrino. For an integrated luminosity of 120 fb−1 at LHC RUN II, signals can be found if heavy-to-light neutrino mixings are |UNμ|^2,|UNe|^2≳10−6.Scopus© Citations 19 - PublicationSearch for heavy sterile neutrinos in trileptons at the LHC(2017-10-01)
; ;Kim, C. S.Wang, KechenWe present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W± → e± e± μ∓ ν and μ± μ± e∓ ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass mN = 20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb−1, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings |UNe|2 ∼ |UNμ|2∼ 10−6, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10−5.Scopus© Citations 18 - PublicationSearch for sterile neutrinos decaying into pions at the LHC(2018-02-01)
; ;Kim, C. S. ;Neill, Nicolás A.Yuan, Xing BoWe study the possibility to observe sterile neutrinos with masses in the range between 5 GeV and 20 GeV at the LHC, using the exclusive semileptonic modes involving pions, namely W to lepton + N to n pions + lepton+lepton (n = 1, 2, 3). The two pion and three pion modes require extrapolations of form factors to large time-like q2, which we do using vector dominance models as well as light front holographic QCD, with remarkable agreement. This mass region is difficult to explore with inclusive dilepton+dijet modes or trilepton modes and impossible to explore in rare meson decays. While particle identification is a real challenge in these modes, vertex displacement due to the long living neutrino in the above mass range can greatly help reduce backgrounds. Assuming a sample of 109 W bosons at the end of the LHC Run 2, these modes could discover a sterile neutrino in the above mass range or improve the current bounds on the heavy-to-light lepton mixings by an order of magnitude, U2lN∼2×10−6. Moreover, by studying the equal sign and opposite sign dileptons, the Majorana or Dirac character of the sterile neutrino may be revealed.Scopus© Citations 18